文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent advances in lanthanide-doped up-conversion probes for theranostics.

作者信息

Xu Danyang, Li Chenxu, Li Wenjing, Lin Bi, Lv Ruichan

机构信息

Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.

出版信息

Front Chem. 2023 Feb 9;11:1036715. doi: 10.3389/fchem.2023.1036715. eCollection 2023.


DOI:10.3389/fchem.2023.1036715
PMID:36846851
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9949555/
Abstract

Up-conversion (or anti-Stokes) luminescence refers to the phenomenon whereby materials emit high energy, short-wavelength light upon excitation at longer wavelengths. Lanthanide-doped up-conversion nanoparticles (Ln-UCNPs) are widely used in biomedicine due to their excellent physical and chemical properties such as high penetration depth, low damage threshold and light conversion ability. Here, the latest developments in the synthesis and application of Ln-UCNPs are reviewed. First, methods used to synthesize Ln-UCNPs are introduced, and four strategies for enhancing up-conversion luminescence are analyzed, followed by an overview of the applications in phototherapy, bioimaging and biosensing. Finally, the challenges and future prospects of Ln-UCNPs are summarized.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/7013eb9d2694/fchem-11-1036715-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/14f36aadb9be/fchem-11-1036715-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/19265a7a3d8d/fchem-11-1036715-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/2e36550ea702/fchem-11-1036715-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/fe109dad5bec/fchem-11-1036715-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/65969d239091/fchem-11-1036715-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/a8146cd81e60/fchem-11-1036715-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/e50c3a1edc10/fchem-11-1036715-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/55917b5dcdf0/fchem-11-1036715-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/e58c4a8d8bca/fchem-11-1036715-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/317de16d2ef8/fchem-11-1036715-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/7013eb9d2694/fchem-11-1036715-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/14f36aadb9be/fchem-11-1036715-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/19265a7a3d8d/fchem-11-1036715-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/2e36550ea702/fchem-11-1036715-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/fe109dad5bec/fchem-11-1036715-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/65969d239091/fchem-11-1036715-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/a8146cd81e60/fchem-11-1036715-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/e50c3a1edc10/fchem-11-1036715-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/55917b5dcdf0/fchem-11-1036715-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/e58c4a8d8bca/fchem-11-1036715-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/317de16d2ef8/fchem-11-1036715-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a00/9949555/7013eb9d2694/fchem-11-1036715-g011.jpg

相似文献

[1]
Recent advances in lanthanide-doped up-conversion probes for theranostics.

Front Chem. 2023-2-9

[2]
Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application.

Mikrochim Acta. 2022-2-17

[3]
Controlled optical characteristics of lanthanide doped upconversion nanoparticles for emerging applications.

Dalton Trans. 2017-12-12

[4]
Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding.

Small. 2015-12-17

[5]
Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation.

Acc Chem Res. 2020-11-17

[6]
Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications.

Biotechnol Adv. 2012-4-27

[7]
Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications.

Adv Mater. 2013-7-1

[8]
Combating Concentration Quenching in Upconversion Nanoparticles.

Acc Chem Res. 2019-10-21

[9]
Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors.

Adv Colloid Interface Sci. 2022-2

[10]
Applications of upconversion nanoparticles in analytical and biomedical sciences: a review.

Analyst. 2022-7-12

引用本文的文献

[1]
Enhanced brightness and photostability of dye-sensitized Nd-doped rare earth nanocomposite for in vivo NIR-IIb vascular and orthotopic tumor imaging.

J Nanobiotechnology. 2025-2-7

[2]
Silica-coated LiYF:Yb, Tm upconverting nanoparticles are non-toxic and activate minor stress responses in mammalian cells.

RSC Adv. 2024-3-14

[3]
Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol-Gel Methods.

Gels. 2023-12-22

本文引用的文献

[1]
Comparison of sonodynamic, photodynamic and sonophotodynamic therapy activity of fluorinated pyridine substituted silicon phthalocyanines on PC3 prostate cancer cell line.

Photodiagnosis Photodyn Ther. 2023-6

[2]
Electrochemically assisted flexible lanthanide upconversion luminescence sensing of heavy metal contamination with high sensitivity and selectivity.

Nanoscale Adv. 2018-8-20

[3]
Spiropyran-modified upconversion nanocomposite as a fluorescent sensor for diagnosis of histidinemia.

RSC Adv. 2020-7-16

[4]
pH-responsive polyelectrolyte complexation on upconversion nanoparticles: a multifunctional nanocarrier for protection, delivery, and 3D-imaging of therapeutic protein.

J Mater Chem B. 2022-5-11

[5]
Red Phosphorus Decorated TiO Nanorod Mediated Photodynamic and Photothermal Therapy for Renal Cell Carcinoma.

Small. 2021-7

[6]
A Photosensitive Polymeric Carrier with a Renewable Singlet Oxygen Reservoir Regulated by Two NIR Beams for Enhanced Antitumor Phototherapy.

Small. 2021-7

[7]
Ultra-sensitive Nanoprobe Modified with Tumor Cell Membrane for UCL/MRI/PET Multimodality Precise Imaging of Triple-Negative Breast Cancer.

Nanomicro Lett. 2020-2-22

[8]
Aptamer-Targeted Photodynamic Platforms for Tumor Therapy.

ACS Appl Mater Interfaces. 2021-6-23

[9]
Transforming growth factor-β blockade modulates tumor mechanical microenvironments for enhanced antitumor efficacy of photodynamic therapy.

Nanoscale. 2021-6-14

[10]
Sonosensitizer-Functionalized Graphene Nanoribbons for Adhesion Blocking and Sonodynamic Ablation of Ovarian Cancer Spheroids.

Adv Healthc Mater. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索