College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
Institute of Science and Technology, Klosterneuburg, Austria.
PLoS One. 2023 Feb 27;18(2):e0279838. doi: 10.1371/journal.pone.0279838. eCollection 2023.
Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency, facilitating an in depth analytic study of the equations which incorporates scaling parameters' contributions to coexistence. We define the functional response term to match empirical findings, and examine situations where metabolic theory derivations and observation diverge. The dynamical properties of the Rosenzweig-MacArthur system, encompassing the distribution of size-abundance equilibria, the scaling of period and amplitude of population cycling, and relationships between predator and prey abundances, are consistent with empirical observation. Our parameterisation is an accurate minimal model across 15+ orders of mass magnitude.
由于在研究系统水平效应时具有简约性和广泛的适用性,种群动态模型的异速设定很有吸引力。在这里,我们参数化了规模标度的罗氏-麦克阿瑟微分方程,以消除猎物质量的依赖性,从而深入分析这些方程,其中包括标度参数对共存的贡献。我们定义功能反应项以匹配经验发现,并研究代谢理论推导和观察结果出现分歧的情况。罗氏-麦克阿瑟系统的动力学特性,包括大小丰度平衡的分布、种群循环的周期和幅度的标度,以及捕食者和猎物丰度之间的关系,与经验观察一致。我们的参数化在 15 个以上的质量数量级上是一个准确的最小模型。