Suppr超能文献

比较在噪声环境中检测有用信号的信息准则。

Comparison of Information Criteria for Detection of Useful Signals in Noisy Environments.

机构信息

Institute of Control Sciences of RAS, 117997 Moscow, Russia.

出版信息

Sensors (Basel). 2023 Feb 14;23(4):2133. doi: 10.3390/s23042133.

Abstract

This paper considers the appearance of indications of useful acoustic signals in the signal/noise mixture. Various information characteristics (information entropy, Jensen-Shannon divergence, spectral information divergence and statistical complexity) are investigated in the context of solving this problem. Both time and frequency domains are studied for the calculation of information entropy. The effectiveness of statistical complexity is shown in comparison with other information metrics for different signal-to-noise ratios. Two different approaches for statistical complexity calculations are also compared. In addition, analytical formulas for complexity and disequilibrium are obtained using entropy variation in the case of signal spectral distribution. The connection between the statistical complexity criterion and the Neyman-Pearson approach for hypothesis testing is discussed. The effectiveness of the proposed approach is shown for different types of acoustic signals and noise models, including colored noises, and different signal-to-noise ratios, especially when the estimation of additional noise characteristics is impossible.

摘要

本文考虑了有用声信号在信号/噪声混合物中的出现迹象。在解决这个问题的过程中,研究了各种信息特征(信息熵、杰恩-香农散度、谱信息散度和统计复杂度)。信息熵的计算既研究了时域也研究了频域。统计复杂度的有效性通过与其他信息指标在不同信噪比下的比较来显示。还比较了统计复杂度计算的两种不同方法。此外,在信号谱分布的情况下,通过熵变化获得了复杂性和不平衡性的解析公式。讨论了统计复杂度准则与假设检验的 Neyman-Pearson 方法之间的联系。该方法对于不同类型的声信号和噪声模型,包括有色噪声,以及不同的信噪比,特别是在不可能估计额外噪声特性的情况下,都表现出了有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50df/9966083/e7a9c82ba055/sensors-23-02133-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验