Suppr超能文献

智能纺织品回收系统——基于物联网的动态路线优化

Smart textile waste collection system - Dynamic route optimization with IoT.

作者信息

Martikkala Antti, Mayanti Bening, Helo Petri, Lobov Andrei, Ituarte Iñigo Flores

机构信息

Unit of Automation Technology and Mechanical Engineering, Tampere University, Korkeakoulunkatu 7, FI-33720, Tampere, Finland; Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Richard Birkelands Vei 2b, NO-7034, Trondheim, Norway.

Vaasa Energy Business Innovation Centre, University of Vaasa, Yliopistonranta 10, FI-65200, Vaasa, Finland.

出版信息

J Environ Manage. 2023 Jun 1;335:117548. doi: 10.1016/j.jenvman.2023.117548. Epub 2023 Mar 4.

Abstract

Increasing textile production is associated with an environmental burden which can be decreased with an improved recycling system by digitalization. The collection of textiles is done with so-called curbside bins. Sensor technologies support dynamic-informed decisions during route planning, helping predict waste accumulation in bins, which is often irregular and difficult to predict. Therefore, dynamic route-optimization decreases the costs of textile collection and its environmental load. The existing research on the optimization of waste collection is not based on real-world data and is not carried out in the context of textile waste. The lack of real-world data can be attributed to the limited availability of tools for long-term data collection. Consequently, a system for data collection with flexible, low-cost, and open-source tools is developed. The viability and reliability of such tools are tested in practice to collect real-world data. This research demonstrates how smart bins solution for textile waste collection can be linked to a dynamic route-optimization system to improve overall system performance. The developed Arduino-based low-cost sensors collected actual data in Finnish outdoor conditions for over twelve months. The viability of the smart waste collection system was complemented with a case study evaluating the collection cost of the conventional and dynamic scheme of discarded textiles. The results of this study show how a sensor-enhanced dynamic collection system reduced the cost 7.4% compared with the conventional one. We demonstrate a time efficiency of -7.3% and that a reduction of 10.2% in CO2 emissions is achievable only considering the presented case study.

摘要

纺织品产量的增加伴随着环境负担,而通过数字化改进回收系统可以减轻这种负担。纺织品的收集通过所谓的路边垃圾桶进行。传感器技术在路线规划过程中支持基于动态信息的决策,有助于预测垃圾桶中的废物堆积情况,而这种堆积往往是不规则且难以预测的。因此,动态路线优化降低了纺织品收集成本及其环境负荷。现有的关于废物收集优化的研究并非基于实际数据,也不是在纺织废物的背景下进行的。缺乏实际数据可归因于长期数据收集工具的可用性有限。因此,开发了一个使用灵活、低成本和开源工具的数据收集系统。在实践中测试了这些工具的可行性和可靠性,以收集实际数据。这项研究展示了用于纺织废物收集的智能垃圾桶解决方案如何与动态路线优化系统相连接,以提高整体系统性能。基于 Arduino 开发的低成本传感器在芬兰户外条件下收集了超过十二个月的实际数据。通过一个案例研究评估废弃纺织品的传统收集方案和动态收集方案的成本,对智能废物收集系统的可行性进行了补充。这项研究的结果表明,与传统系统相比,传感器增强的动态收集系统如何将成本降低了 7.4%。我们证明了时间效率为 -7.3%,并且仅考虑所呈现的案例研究,二氧化碳排放量可减少 10.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验