Krusche Sebastian, Al Naser Ibrahim, Bdiwi Mohamad, Ihlenfeldt Steffen
Department of Production System and Factory Automation, Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany.
Front Robot AI. 2023 Feb 15;10:1028329. doi: 10.3389/frobt.2023.1028329. eCollection 2023.
Manual annotation for human action recognition with content semantics using 3D Point Cloud (3D-PC) in industrial environments consumes a lot of time and resources. This work aims to recognize, analyze, and model human actions to develop a framework for automatically extracting content semantics. Main Contributions of this work: 1. design a multi-layer structure of various DNN classifiers to detect and extract humans and dynamic objects using 3D-PC preciously, 2. empirical experiments with over 10 subjects for collecting datasets of human actions and activities in one industrial setting, 3. development of an intuitive GUI to verify human actions and its interaction activities with the environment, 4. design and implement a methodology for automatic sequence matching of human actions in 3D-PC. All these procedures are merged in the proposed framework and evaluated in one industrial Use-Case with flexible patch sizes. Comparing the new approach with standard methods has shown that the annotation process can be accelerated by 5.2 times through automation.
在工业环境中,使用三维点云(3D-PC)对具有内容语义的人类动作识别进行人工标注会消耗大量时间和资源。这项工作旨在识别、分析和建模人类动作,以开发一个自动提取内容语义的框架。这项工作的主要贡献:1. 设计各种深度神经网络(DNN)分类器的多层结构,以利用3D-PC精确地检测和提取人类及动态物体;2. 对10多名受试者进行实证实验,以收集一个工业场景中的人类动作和活动数据集;3. 开发一个直观的图形用户界面(GUI),以验证人类动作及其与环境的交互活动;4. 设计并实现一种用于在3D-PC中自动匹配人类动作序列的方法。所有这些过程都融入到所提出的框架中,并在一个具有灵活补丁大小的工业用例中进行评估。将新方法与标准方法进行比较表明,通过自动化,标注过程可以加快5.2倍。