Zhang Jie, Li Zhishang, Zhang Qi, Zhang Lin, Ma Tongtong, Ma Xinyue, Liang Kang, Ying Yibin, Fu Yingchun
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China.
School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
ACS Appl Mater Interfaces. 2023 Apr 5;15(13):17222-17232. doi: 10.1021/acsami.3c00909. Epub 2023 Mar 6.
Balancing the trade-off between permeability and selectivity while realizing multiple sieving from complex matrices remains as bottlenecks for membrane-based separation. Here, a unique nanolaminate film of transition metal carbide (MXene) nanosheets intercalated by metal-organic framework (MOF) nanoparticles was developed. The intercalation of MOFs modulated the interlayer spacing and created nanochannels between MXene nanosheets, promoting a fast water permeance of 231 L m h bar. The nanochannel endowed a 10-fold lengthened diffusion path and the nanoconfinement effect to enhance the collision probability, establishing an adsorption model with a separation performance above 99% to chemicals and nanoparticles. In addition to the remained rejection function of nanosheets, the film integrated dual separation mechanisms of both size exclusion and selective adsorption, enabling a rapid and selective liquid phase separation paradigm that performs simultaneous multiple chemicals and nanoparticles sieving. The unique MXenes-MOF nanolaminate film and multiple sieving concepts are expected to pave a promising way toward highly efficient membranes and additional water treatment applications.
在实现从复杂基质中进行多重筛分的同时,平衡渗透性和选择性之间的权衡仍然是基于膜的分离的瓶颈。在此,开发了一种独特的由金属有机框架(MOF)纳米颗粒插层的过渡金属碳化物(MXene)纳米片的纳米层状膜。MOF的插层调节了层间距,并在MXene纳米片之间形成了纳米通道,促进了231 L m⁻² h⁻¹ bar的快速透水率。纳米通道赋予了10倍延长的扩散路径和纳米限域效应,以提高碰撞概率,建立了对化学物质和纳米颗粒分离性能高于99%的吸附模型。除了纳米片保留的截留功能外,该膜还整合了尺寸排阻和选择性吸附的双重分离机制,实现了一种快速且选择性的液相分离模式,能够同时进行多种化学物质和纳米颗粒的筛分。独特的MXenes-MOF纳米层状膜和多重筛分概念有望为高效膜及其他水处理应用开辟一条充满希望的道路。