Department of Pediatrics and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Dev Neurosci. 2023;45(3):126-138. doi: 10.1159/000529981. Epub 2023 Mar 7.
Alterations in the expression of genes encoding proteins involved in synapse formation, maturation, and function are a hallmark of many neurodevelopmental and psychiatric disorders. For example, there is reduced neocortical expression of the MET receptor tyrosine kinase (MET) transcript and protein in Autism Spectrum Disorder (ASD) and Rett syndrome. Preclinical in vivo and in vitro models manipulating MET signaling reveal that the receptor modulates excitatory synapse development and maturation in select forebrain circuits. The molecular adaptations underlying the altered synaptic development remain unknown. We performed a comparative mass spectrometry analysis of synaptosomes generated from the neocortex of wild type and Met null mice during the peak of synaptogenesis (postnatal day 14; data are available from ProteomeXchange with identifier PXD033204). The analyses revealed broad disruption of the developing synaptic proteome in the absence of MET, consistent with the localization of MET protein in pre- and postsynaptic compartments, including proteins associated with the neocortical synaptic MET interactome and those encoded by syndromic and ASD risk genes. In addition to an overrepresentation of altered proteins associated with the SNARE complex, multiple proteins in the ubiquitin-proteasome system and associated with the synaptic vesicle, as well as proteins that regulate actin filament organization and synaptic vesicle exocytosis/endocytosis, were disrupted. Taken together, the proteomic changes are consistent with structural and functional changes observed following alterations in MET signaling. We hypothesize that the molecular adaptations following Met deletion may reflect a general mechanism that produces circuit-specific molecular changes due to loss or reduction of synaptic signaling proteins.
参与突触形成、成熟和功能的蛋白质编码基因表达的改变是许多神经发育和精神疾病的标志。例如,自闭症谱系障碍 (ASD) 和雷特综合征中,新皮层中 MET 受体酪氨酸激酶 (MET) 转录本和蛋白的表达减少。调节 MET 信号的临床前体内和体外模型表明,该受体调节特定前脑回路中兴奋性突触的发育和成熟。改变的突触发育的分子适应仍然未知。我们对在突触发生高峰期(出生后第 14 天)从野生型和 Met 缺失小鼠的新皮层中产生的突触小体进行了比较质谱分析(数据可从 ProteomeXchange 获得,标识符为 PXD033204)。分析表明,在没有 MET 的情况下,发育中的突触蛋白质组广泛受到破坏,这与 MET 蛋白在突触前和突触后区室中的定位一致,包括与皮质突触 MET 相互作用组相关的蛋白和那些由综合征和 ASD 风险基因编码的蛋白。除了与 SNARE 复合物相关的改变蛋白的过度表达外,泛素 - 蛋白酶体系统中的多种蛋白以及与突触小泡相关的蛋白,以及调节肌动蛋白丝组织和突触小泡胞吐/内吞的蛋白也被破坏。总之,蛋白质组的变化与 MET 信号改变后观察到的结构和功能变化一致。我们假设,Met 缺失后的分子适应可能反映了一种普遍机制,由于突触信号蛋白的缺失或减少,产生了特定于电路的分子变化。