Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Department of Animal Science, Yasouj University, Yasouj, Iran.
PLoS One. 2023 Mar 9;18(3):e0277480. doi: 10.1371/journal.pone.0277480. eCollection 2023.
Within the realms of human thoughts on nature, Fourier analysis is considered as one of the greatest ideas currently put forwarded. The Fourier transform shows that any periodic function can be rewritten as the sum of sinusoidal functions. Having a Fourier transform view on real-world problems like the DNA sequence of genes, would make things intuitively simple to understand in comparison with their initial formal domain view. In this study we used discrete Fourier transform (DFT) on DNA sequences of a set of genes in the bovine genome known to govern milk production, in order to develop a new gene clustering algorithm. The implementation of this algorithm is very user-friendly and requires only simple routine mathematical operations. By transforming the configuration of gene sequences into frequency domain, we sought to elucidate important features and reveal hidden gene properties. This is biologically appealing since no information is lost via this transformation and we are therefore not reducing the number of degrees of freedom. The results from different clustering methods were integrated using evidence accumulation algorithms to provide in insilico validation of our results. We propose using candidate gene sequences accompanied by other genes of biologically unknown function. These will then be assigned some degree of relevant annotation by using our proposed algorithm. Current knowledge in biological gene clustering investigation is also lacking, and so DFT-based methods will help shine a light on use of these algorithms for biological insight.
在人类对自然的思考领域中,傅里叶分析被认为是目前提出的最伟大的思想之一。傅里叶变换表明,任何周期性函数都可以重写为正弦函数的和。与初始形式领域的观点相比,将傅里叶变换的观点应用于基因的 DNA 序列等实际问题,将使事情直观地变得简单易懂。在这项研究中,我们使用离散傅里叶变换(DFT)对一组已知控制牛奶产量的牛基因组基因的 DNA 序列进行了分析,目的是开发一种新的基因聚类算法。该算法的实现非常用户友好,只需要简单的常规数学运算。通过将基因序列的结构转换到频域,我们试图阐明重要的特征并揭示隐藏的基因性质。这在生物学上是有吸引力的,因为这种转换不会丢失任何信息,因此我们不会减少自由度的数量。使用证据积累算法整合来自不同聚类方法的结果,为我们的结果提供了虚拟验证。我们建议使用候选基因序列,并辅以生物学上未知功能的其他基因。然后,我们将使用我们提出的算法对这些基因进行一定程度的相关注释。目前在生物基因聚类研究方面的知识也很缺乏,因此基于 DFT 的方法将有助于揭示这些算法在生物学中的应用。