Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico.
Sci Total Environ. 2023 Jun 1;875:162610. doi: 10.1016/j.scitotenv.2023.162610. Epub 2023 Mar 7.
Understanding and communicating instances of microplastic contamination is critical for enabling plastic-free transitions. While microplastics research uses a variety of commercial chemicals and laboratory liquids, the impact of microplastics on these materials remains unknown. To fill this knowledge gap, the current study investigated microplastics abundance and their characteristics in laboratory waters (distilled, deionized, and Milli-Q), salts (NaCl and CaCl), chemical solutions (HO, KOH and NaOH), and ethanol from various research laboratories and commercial brands. The mean abundance of microplastics in water, salt, chemical solutions, and ethanol samples was 30.21 ± 30.40 (L), 24.00 ± 19.00 (10 g), 187.00 ± 45.00 (L), and 27.63 ± 9.53 (L), respectively. Data comparisons revealed significant discrepancies between the samples in terms of microplastic abundance. Fibers (81 %) were the most common microplastics, followed by fragments (16 %) and films (3 %); 95 % of them were <500 μm, with the smallest and largest particle sizes recorded being 26 μm and 2.30 mm, respectively. Microplastic polymers discovered included polyethylene, polypropylene, polyester, nylon, acrylic, paint chips, cellophane, and viscose. These findings lay the groundwork for identifying common laboratory reagents as a potential contributor to microplastic contamination in samples, and we offer solutions that should be integrated into data processing to produce accurate results. Taken together, this study shows that commonly used reagents not only play a key role in the microplastic separation process but also contain microplastic contamination themselves, requiring the attention of researchers to promote quality control during microplastic analysis and commercial suppliers in formulating novel prevention strategies.
了解和交流微塑料污染的实例对于实现无塑料转型至关重要。虽然微塑料研究使用了各种商业化学品和实验室液体,但微塑料对这些材料的影响仍不清楚。为了填补这一知识空白,本研究调查了来自不同研究实验室和商业品牌的实验室水(蒸馏水、去离子水和 Milli-Q)、盐(NaCl 和 CaCl)、化学溶液(HO、KOH 和 NaOH)和乙醇中的微塑料丰度及其特征。水、盐、化学溶液和乙醇样品中微塑料的平均丰度分别为 30.21 ± 30.40(L)、24.00 ± 19.00(10g)、187.00 ± 45.00(L)和 27.63 ± 9.53(L)。数据比较显示,样品之间的微塑料丰度存在显著差异。纤维(81%)是最常见的微塑料,其次是碎片(16%)和薄膜(3%);95%的微塑料粒径<500μm,记录的最小和最大粒径分别为 26μm 和 2.30mm。发现的微塑料聚合物包括聚乙烯、聚丙烯、聚酯、尼龙、丙烯酸、油漆碎片、玻璃纸和粘胶纤维。这些发现为确定常见的实验室试剂是否是样品中微塑料污染的潜在来源奠定了基础,我们提供了一些解决方案,这些解决方案应该整合到数据处理中,以产生准确的结果。总的来说,这项研究表明,常用的试剂不仅在微塑料分离过程中起着关键作用,而且本身也含有微塑料污染,这需要研究人员注意在微塑料分析中进行质量控制,并促使商业供应商制定新的预防策略。