Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G 1H9, Canada.
Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G 1H9, Canada.
Small. 2023 Jun;19(24):e2207754. doi: 10.1002/smll.202207754. Epub 2023 Mar 10.
In the lithium-dominated era, rechargeable Zn batteries are emerging as a competitive alternative. However, the sluggish kinetics of ion diffusion and structural destruction of cathode materials have thus far hampered the realization of future large-scale energy storage. Herein, an in situ self-transformation approach is reported to electrochemically boost the activity of a high-temperature, argon-treated VO (AVO) microsphere for effective Zn ion storage. The presynthesized AVO with hierarchical structure and high crystallinity allows efficient electrochemical oxidation and water insertion to induce self-phase transformation into V O ·nH O within the first charging process, which leads to rich active sites and fast electrochemical kinetics. Using AVO cathode, an outstanding discharge capacity of 446 mAh g at 0.1 A g , high rate capability of 323 mAh g at 10 A g and excellent cycling stability for 4000 cycles at 20 A g with high capacity retention are demonstrated. Importantly, such zinc-ion batteries with phase self-transition can also perform well at high-loading, sub-zero temperature, or pouch cell conditions for practical application. This work not only paves a new route to design in situ self-transformation in energy storage devices, but also broadens the horizons of aqueous zinc-supplied cathodes.
在锂离子主导的时代,可充电锌电池作为一种极具竞争力的替代品而崭露头角。然而,离子扩散动力学缓慢和阴极材料的结构破坏,迄今为止一直阻碍着未来大规模储能的实现。在此,报告了一种原位自转变方法,以电化学方式提高高温氩处理 VO(AVO)微球的活性,用于有效存储锌离子。预先合成的 AVO 具有分级结构和高结晶度,可在首次充电过程中通过高效的电化学氧化和水插入,诱导自相变为 V O ·nH O ,从而产生丰富的活性位点和快速的电化学动力学。使用 AVO 阴极,可实现 446 mAh g 在 0.1 A g 下的出色放电容量、323 mAh g 在 10 A g 下的高倍率性能以及在 20 A g 下 4000 次循环的出色循环稳定性和高容量保持率。重要的是,这种具有相自转变的锌离子电池在高负荷、零下温度或软包电池条件下也能很好地工作,适用于实际应用。这项工作不仅为储能设备中设计原位自转变开辟了新途径,而且拓宽了水系锌供阴极的视野。