Electrical Insulation Research Center, Institute of Materials Science, University of Connecticut, 97 N Eagleville Rd, Storrs, CT, 06269, USA.
Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT, 06269, USA.
Small. 2023 Jun;19(24):e2208105. doi: 10.1002/smll.202208105. Epub 2023 Mar 10.
Polymer-based dielectrics are essential components in electrical and power electronic systems for high power density storage and conversion. A mounting challenge for polymer dielectrics is how to maintain their electrical insulation at not only high electric fields but also elevated temperatures, in order to meet the growing needs for renewable energies and grand electrifications. Here, a sandwiched barium titanate/polyamideimide nanocomposite with reinforced interfaces via two-dimensional nanocoatings is presented. It is demonstrated that boron nitride and montmorillonite nanocoatings can block and dissipate injected charges, respectively, to present a synergetic effect on the suppression of conduction loss and the enhancement of breakdown strength. Ultrahigh energy densities of 2.6, 1.8, and 1.0 J cm are obtained at 150 °C, 200 °C, and 250 °C, respectively, with a charge-discharge efficiency >90%, far outperforming the state-of-the-art high-temperature polymer dielectrics. Cyclic charge-discharge tests up to 10 000 times verify the excellent lifetime of the interface-reinforced sandwiched polymer nanocomposite. This work provides a new pathway to design high-performance polymer dielectrics for high-temperature energy storage via interfacial engineering.
聚合物基电介质是高功率密度储能和转换电力电子系统中的重要组成部分。聚合物电介质面临的一个挑战是如何在高电场和高温下保持其电绝缘性能,以满足可再生能源和大规模电气化日益增长的需求。本文提出了一种通过二维纳米涂层增强界面的钛酸钡/聚酰胺酰亚胺夹层纳米复合材料。结果表明,氮化硼和蒙脱土纳米涂层可以分别阻挡和耗散注入的电荷,从而在抑制传导损耗和提高击穿强度方面表现出协同效应。在 150°C、200°C 和 250°C 下,分别获得了 2.6、1.8 和 1.0 J cm 的超高能量密度,充电-放电效率>90%,远优于现有高温聚合物电介质。多达 10000 次的循环充放电测试验证了界面增强夹层聚合物纳米复合材料的优异寿命。这项工作通过界面工程为高温储能设计高性能聚合物电介质提供了一条新途径。