Suppr超能文献

基于卡尔曼公式的参数优化方法在土壤-作物系统模型中的应用。

Application of Parameter Optimization Methods Based on Kalman Formula to the Soil-Crop System Model.

机构信息

Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

出版信息

Int J Environ Res Public Health. 2023 Mar 4;20(5):4567. doi: 10.3390/ijerph20054567.

Abstract

Soil-crop system models are effective tools for optimizing water and nitrogen application schemes, saving resources and protecting the environment. To guarantee model prediction accuracy, we must apply parameter optimization methods for model calibration. The performance of two different parameter optimization methods based on the Kalman formula are evaluated for a parameter identification of the soil Water Heat Carbon Nitrogen Simulator (WHCNS) model using mean bias error (ME), root-mean-square error (RMSE) and an index of agreement (IA). One is the iterative local updating ensemble smoother (ILUES), and the other is the DiffeRential Evolution Adaptive Metropolis with Kalman-inspired proposal distribution (DREAMkzs). Our main results are as follows: (1) Both ILUES and DREAMkzs algorithms performed well in model parameter calibration with the RMSE_Maximum a posteriori (RMSE_MAP) values were 0.0255 and 0.0253, respectively; (2) ILUES significantly accelerated the process to the reference values in the artificial case, while outperforming in the calibration of multimodal parameter distribution in the practical case; and (3) the DREAMkzs algorithm considerably accelerated the burn-in process compared with the original algorithm without Kalman-formula-based sampling for parameter optimization of the WHCNS model. In conclusion, ILUES and DREAMkzs can be applied to a parameter identification of the WHCNS model for more accurate prediction results and faster simulation efficiency, contributing to the popularization of the model.

摘要

土壤-作物系统模型是优化水氮施用量方案、节约资源和保护环境的有效工具。为保证模型预测精度,必须采用模型校准的参数优化方法。利用均方误差(ME)、均方根误差(RMSE)和一致性指数(IA),评价了基于卡尔曼公式的两种不同参数优化方法(迭代局部更新集合平滑器(ILUES)和基于差分进化的自适应 metropolis 卡尔曼启发式提议分布算法(DREAMkzs))对土壤水热碳氮模拟器(WHCNS)模型的参数识别性能。主要结果如下:(1)ILUES 和 DREAMkzs 算法在模型参数校准中表现良好,RMSE_最大后验(RMSE_MAP)值分别为 0.0255 和 0.0253;(2)在人工案例中,ILUES 显著加快了向参考值收敛的过程,而在实际案例中多峰参数分布的校准中表现更好;(3)与原始算法相比,DREAMkzs 算法在 WHCNS 模型的参数优化中,极大地加快了 burn-in 过程,无需基于卡尔曼公式的采样。总之,ILUES 和 DREAMkzs 可用于 WHCNS 模型的参数识别,以获得更准确的预测结果和更快的模拟效率,有助于模型的推广。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b1/10002424/4806699c1f89/ijerph-20-04567-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验