Suppr超能文献

用于增益辅助金属纳米球的动态多模米氏模型

Dynamic Multi-Mode Mie Model for Gain-Assisted Metal Nano-Spheres.

作者信息

Recalde Nicole, Bustamante Daniel, Infusino Melissa, Veltri Alessandro

机构信息

Colegio de Ciencias e Ingenieria, Universidad San Francisco de Quito, Quito 170901, Ecuador.

Department of Physics, Boston University, Boston, MA 02215, USA.

出版信息

Materials (Basel). 2023 Feb 25;16(5):1911. doi: 10.3390/ma16051911.

Abstract

Coupling externally pumped gain materials with plasmonic spherical particles, even in the simplest case of a single spherical nanoparticle in a uniform gain medium, generates an incredibly rich variety of electrodynamic phenomena. The appropriate theoretical description of these systems is dictated by the quantity of the included gain and the size of the nano-particle. On the one hand, when the gain level is below the threshold separating the absorption and the emission regime, a steady-state approach is a rather adequate depiction, yet a time dynamic approach becomes fundamental when this threshold is exceeded. On the other hand, while a quasi-static approximation can be used to model nanoparticles when they are much smaller than the exciting wavelength, a more complete scattering theory is necessary to discuss larger nanoparticles. In this paper, we describe a novel method including a time-dynamical approach to the Mie scattering theory, which is able to account for all the most enticing aspects of the problem without any limitation in the particle's size. Ultimately, although the presented approach does not fully describe the emission regime yet, it does allow us to predict the transient states preceding emission and represents an essential step forward in the direction of a model able to adequately describe the full electromagnetic phenomenology of these systems.

摘要

将外部泵浦增益材料与等离子体球形颗粒耦合,即使在均匀增益介质中单个球形纳米颗粒这种最简单的情况下,也会产生极其丰富多样的电动力学现象。对这些系统进行恰当的理论描述取决于所含增益的量以及纳米颗粒的尺寸。一方面,当增益水平低于区分吸收和发射状态的阈值时,稳态方法是一种相当充分的描述,然而当超过该阈值时,时间动态方法就变得至关重要。另一方面,当纳米颗粒比激发波长小得多时,可以使用准静态近似来模拟纳米颗粒,但讨论较大的纳米颗粒时需要更完整的散射理论。在本文中,我们描述了一种新颖的方法,包括对米氏散射理论采用时间动态方法,该方法能够考虑该问题所有最引人入胜的方面,而对颗粒尺寸没有任何限制。最终,尽管所提出的方法尚未完全描述发射状态,但它确实使我们能够预测发射之前的瞬态状态,并且代表了朝着能够充分描述这些系统完整电磁现象学的模型方向迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/10004665/aada9bddbca4/materials-16-01911-g006.jpg

相似文献

1
Dynamic Multi-Mode Mie Model for Gain-Assisted Metal Nano-Spheres.
Materials (Basel). 2023 Feb 25;16(5):1911. doi: 10.3390/ma16051911.
2
Minimal spaser threshold within electrodynamic framework: Shape, size and modes.
Ann Phys. 2016 Apr;528(3-4):295-306. doi: 10.1002/andp.201500318. Epub 2015 Dec 7.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Photothermal Determination of Absorption and Scattering Spectra of Silver Nanoparticles.
Appl Spectrosc. 2018 Feb;72(2):234-240. doi: 10.1177/0003702817738056. Epub 2017 Oct 25.
5
Probing a century old prediction one plasmonic particle at a time.
Nano Lett. 2010 Apr 14;10(4):1398-404. doi: 10.1021/nl100199h.
7
Methods for describing the electromagnetic properties of silver and gold nanoparticles.
Acc Chem Res. 2008 Dec;41(12):1710-20. doi: 10.1021/ar800028j.
8
Anomalous forward scattering of dielectric gain nanoparticles.
Opt Express. 2015 Feb 9;23(3):2091-100. doi: 10.1364/OE.23.002091.

本文引用的文献

1
Ten years of spasers and plasmonic nanolasers.
Light Sci Appl. 2020 May 25;9:90. doi: 10.1038/s41377-020-0319-7. eCollection 2020.
2
Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications.
Sci Rep. 2018 Oct 31;8(1):16119. doi: 10.1038/s41598-018-33572-y.
3
Biological labels: Here comes the spaser.
Nat Mater. 2017 Jul 26;16(8):790-791. doi: 10.1038/nmat4943.
4
Spaser as a biological probe.
Nat Commun. 2017 Jun 8;8:15528. doi: 10.1038/ncomms15528.
7
Efficient surface plasmon amplification from gain-assisted gold nanorods.
Opt Lett. 2011 Apr 1;36(7):1296-8. doi: 10.1364/OL.36.001296.
8
Overcoming losses with gain in a negative refractive index metamaterial.
Phys Rev Lett. 2010 Sep 17;105(12):127401. doi: 10.1103/PhysRevLett.105.127401. Epub 2010 Sep 14.
9
Loss-free and active optical negative-index metamaterials.
Nature. 2010 Aug 5;466(7307):735-8. doi: 10.1038/nature09278.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验