Suppr超能文献

基于光电容积脉搏波和神经网络的 COVID-19 检测

COVID-19 Detection Using Photoplethysmography and Neural Networks.

机构信息

Department of Information Engineering, University of Florence, 50139 Florence, Italy.

Ospedale San Giuseppe, 50053 Empoli, Italy.

出版信息

Sensors (Basel). 2023 Feb 25;23(5):2561. doi: 10.3390/s23052561.

Abstract

The early identification of microvascular changes in patients with Coronavirus Disease 2019 (COVID-19) may offer an important clinical opportunity. This study aimed to define a method, based on deep learning approaches, for the identification of COVID-19 patients from the analysis of the raw PPG signal, acquired with a pulse oximeter. To develop the method, we acquired the PPG signal of 93 COVID-19 patients and 90 healthy control subjects using a finger pulse oximeter. To select the good quality portions of the signal, we developed a template-matching method that excludes samples corrupted by noise or motion artefacts. These samples were subsequently used to develop a custom convolutional neural network model. The model accepts PPG signal segments as input and performs a binary classification between COVID-19 and control samples. The proposed model showed good performance in identifying COVID-19 patients, achieving 83.86% accuracy and 84.30% sensitivity (hold-out validation) on test data. The obtained results indicate that photoplethysmography may be a useful tool for microcirculation assessment and early recognition of SARS-CoV-2-induced microvascular changes. In addition, such a noninvasive and low-cost method is well suited for the development of a user-friendly system, potentially applicable even in resource-limited healthcare settings.

摘要

对 2019 年冠状病毒病(COVID-19)患者微血管变化的早期识别可能提供一个重要的临床机会。本研究旨在基于深度学习方法定义一种方法,通过分析脉搏血氧仪采集的原始 PPG 信号来识别 COVID-19 患者。为了开发该方法,我们使用指夹式脉搏血氧仪采集了 93 例 COVID-19 患者和 90 例健康对照者的 PPG 信号。为了选择信号的高质量部分,我们开发了一种模板匹配方法,该方法排除了受噪声或运动伪影污染的样本。这些样本随后用于开发定制的卷积神经网络模型。该模型接受 PPG 信号段作为输入,并在 COVID-19 和对照样本之间进行二进制分类。所提出的模型在识别 COVID-19 患者方面表现出良好的性能,在测试数据上的准确率为 83.86%,灵敏度为 84.30%(留一验证)。研究结果表明,光电容积脉搏波可能是评估微循环和早期识别 SARS-CoV-2 诱导的微血管变化的有用工具。此外,这种非侵入性和低成本的方法非常适合开发用户友好的系统,即使在资源有限的医疗环境中也具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e501/10007577/94ae57d76f8f/sensors-23-02561-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验