Suppr超能文献

迈向自动化微流控平台:通过共价有机骨架上的 Pd 纳米粒子中的π-π 相互作用优化硝基苯的加氢效率。

Towards Automated Microfluidic-based Platforms: Optimizing Hydrogenation Efficiency of Nitrobenzene through π-π Interactions in Pd Nanoparticles on Covalent Organic Frameworks.

机构信息

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China.

School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.

出版信息

Angew Chem Int Ed Engl. 2023 Jun 5;62(23):e202302297. doi: 10.1002/anie.202302297. Epub 2023 Apr 27.

Abstract

Microplatform with timed automata has been leveraged for guiding the preparation of molecules, whereas the requirement of handling expertise and sophisticated instrument is inevitable in combination with heterogeneous catalysis. Here we report a microfluidic-based autolab with open structures, called Put & Play Automated Microplatform (PPAM). It shows the efficient hydrogenation performance of palladium nanoparticles on the triphenylene-based covalent organic frameworks (Pd/TP-COFs) in which the π-π interactions of TP rings in the vicinity of Pd is optimized by easy change-over of catalyst and simple tuning of reactor geometries in PPAM. Using experiment/simulation of the Pd/TP-COFs coating (PCC) and mixing (PCM) across PPAM with different channel sizes, the turnover frequencies are 60 times the commonly used batch reactor, and aniline productivity of 8.8 g h is achieved in 0.09 cm . This work will raise awareness about the benefits of the catalyst-loaded microplatform in future materials performance campaigns.

摘要

微平台与时间自动机已被用于指导分子的制备,而结合多相催化则不可避免地需要处理专业知识和复杂的仪器。在这里,我们报告了一种基于微流控的具有开放结构的自动实验室,称为放管即用自动化微平台(Put & Play Automated Microplatform,PPAM)。它展示了钯纳米粒子在三联苯基共价有机框架(Pd/TP-COFs)上的高效加氢性能,其中 Pd 附近的 TP 环的 π-π 相互作用通过催化剂的轻松更换和 PPAM 中反应器几何形状的简单调谐得到优化。使用 Pd/TP-COFs 涂层(PCC)和混合(PCM)在具有不同通道尺寸的 PPAM 上的实验/模拟,周转频率是常用间歇式反应器的 60 倍,在 0.09 cm 中实现了 8.8 g/h 的苯胺产率。这项工作将提高人们对负载催化剂的微平台在未来材料性能研究中的优势的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验