Suppr超能文献

从密集的纵向数据中准确预测瞬间认知。

Accurate Prediction of Momentary Cognition From Intensive Longitudinal Data.

机构信息

Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Cambridge, Massachusetts.

Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Cambridge, Massachusetts.

出版信息

Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Aug;8(8):841-851. doi: 10.1016/j.bpsc.2022.12.002. Epub 2022 Dec 14.

Abstract

BACKGROUND

Deficits in cognitive performance are implicated in the development and maintenance of psychopathology. Emerging evidence further suggests that within-person fluctuations in cognitive performance may represent sensitive early markers of neuropsychiatric decline. Incorporating routine cognitive assessments into standard clinical care-to identify between-person differences and monitor within-person fluctuations-has the potential to improve diagnostic screening and treatment planning. In support of these goals, it is critical to understand to what extent cognitive performance varies under routine, remote assessment conditions (i.e., momentary cognition) in relation to a wide range of possible predictors.

METHODS

Using data-driven, high-dimensional methods, we ranked strong predictors of momentary cognition and evaluated out-of-sample predictive accuracy. Our approach leveraged innovations in digital technology, including ambulatory assessment of cognition and behavior 1) at scale (n = 122 participants, n = 94 females), 2) in naturalistic environments, and 3) within an intensive longitudinal study design (mean = 25.5 assessments/participant).

RESULTS

Reaction time (R > 0.70) and accuracy (0.56 >R > 0.35) were strongly predicted by age, between-person differences in mean performance, and time of day. Effects of self-reported, intraindividual fluctuations in environmental (e.g., noise) and internal (e.g., stress) states were also observed.

CONCLUSIONS

Our results provide robust estimates of effect size to characterize sources of cognitive variability, to support the identification of optimal windows for psychosocial interventions, and to possibly inform clinical evaluation under remote neuropsychological assessment conditions.

摘要

背景

认知表现缺陷与精神病理学的发展和维持有关。新出现的证据进一步表明,个体内认知表现的波动可能代表神经精神衰退的敏感早期标志物。将常规认知评估纳入标准临床护理中——以识别个体间差异并监测个体内波动——有可能改善诊断筛选和治疗计划。为了实现这些目标,至关重要的是要了解在常规远程评估条件下(即瞬时认知),认知表现相对于广泛的可能预测因素在多大程度上存在差异。

方法

我们使用数据驱动的高维方法对瞬时认知的强预测因素进行了排名,并评估了样本外预测准确性。我们的方法利用了数字技术的创新,包括认知和行为的流动评估 1)大规模(n=122 名参与者,n=94 名女性),2)在自然环境中,以及 3)在密集的纵向研究设计中(平均每位参与者有 25.5 次评估)。

结果

反应时间(R > 0.70)和准确性(0.56 > R > 0.35)被年龄、个体间平均表现差异和一天中的时间强烈预测。还观察到自我报告的环境(例如,噪音)和内部(例如,压力)状态的个体内波动的影响。

结论

我们的结果提供了稳健的效应大小估计值,以描述认知变异性的来源,支持确定进行心理社会干预的最佳窗口的能力,并可能在远程神经心理评估条件下为临床评估提供信息。

相似文献

1
Accurate Prediction of Momentary Cognition From Intensive Longitudinal Data.从密集的纵向数据中准确预测瞬间认知。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Aug;8(8):841-851. doi: 10.1016/j.bpsc.2022.12.002. Epub 2022 Dec 14.
9
Cognitive deficits in bipolar disorders: Implications for emotion.双相情感障碍中的认知缺陷:对情绪的影响。
Clin Psychol Rev. 2018 Feb;59:126-136. doi: 10.1016/j.cpr.2017.11.006. Epub 2017 Nov 21.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验