Suppr超能文献

基于两亲性伪氨基酸组成预测凋亡蛋白的亚细胞定位

Prediction of apoptosis protein subcellular location based on amphiphilic pseudo amino acid composition.

作者信息

Su Wenxia, Deng Shuyi, Gu Zhifeng, Yang Keli, Ding Hui, Chen Hui, Zhang Zhaoyue

机构信息

College of Science, Inner Mongolia Agriculture University, Hohhot, China.

School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Genet. 2023 Feb 28;14:1157021. doi: 10.3389/fgene.2023.1157021. eCollection 2023.

Abstract

Apoptosis proteins play an important role in the process of cell apoptosis, which makes the rate of cell proliferation and death reach a relative balance. The function of apoptosis protein is closely related to its subcellular location, it is of great significance to study the subcellular locations of apoptosis proteins. Many efforts in bioinformatics research have been aimed at predicting their subcellular location. However, the subcellular localization of apoptotic proteins needs to be carefully studied. In this paper, based on amphiphilic pseudo amino acid composition and support vector machine algorithm, a new method was proposed for the prediction of apoptosis proteins\x{2019} subcellular location. The method achieved good performance on three data sets. The Jackknife test accuracy of the three data sets reached 90.5%, 93.9% and 84.0%, respectively. Compared with previous methods, the prediction accuracies of APACC_SVM were improved.

摘要

凋亡蛋白在细胞凋亡过程中发挥着重要作用,使细胞增殖和死亡速率达到相对平衡。凋亡蛋白的功能与其亚细胞定位密切相关,研究凋亡蛋白的亚细胞定位具有重要意义。生物信息学研究中的许多努力都旨在预测它们的亚细胞定位。然而,凋亡蛋白的亚细胞定位仍需深入研究。本文基于两亲性伪氨基酸组成和支持向量机算法,提出了一种预测凋亡蛋白亚细胞定位的新方法。该方法在三个数据集上取得了良好的性能。三个数据集的留一法检验准确率分别达到了90.5%、93.9%和84.0%。与之前的方法相比,APACC_SVM的预测准确率有所提高。

相似文献

本文引用的文献

4
Analysis and modeling of myopia-related factors based on questionnaire survey.基于问卷调查的近视相关因素分析与建模。
Comput Biol Med. 2022 Nov;150:106162. doi: 10.1016/j.compbiomed.2022.106162. Epub 2022 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验