Suppr超能文献

基于机器学习的自动化海绵细胞学在食管鳞癌和食管胃交界腺癌筛查中的应用:一项全国性、多队列、前瞻性研究。

Machine learning-based automated sponge cytology for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction: a nationwide, multicohort, prospective study.

机构信息

Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; National Clinical Research Center for Digestive Diseases (Shanghai), Shanghai, China.

School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu Province, China.

出版信息

Lancet Gastroenterol Hepatol. 2023 May;8(5):432-445. doi: 10.1016/S2468-1253(23)00004-3. Epub 2023 Mar 14.

Abstract

BACKGROUND

Oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction have a dismal prognosis, and early detection is key to reduce mortality. However, early detection depends on upper gastrointestinal endoscopy, which is not feasible to implement at a population level. We aimed to develop and validate a fully automated machine learning-based prediction tool integrating a minimally invasive sponge cytology test and epidemiological risk factors for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction before endoscopy.

METHODS

For this multicohort prospective study, we enrolled participants aged 40-75 years undergoing upper gastrointestinal endoscopy screening at 39 tertiary or secondary hospitals in China for model training and testing, and included community-based screening participants for further validation. All participants underwent questionnaire surveys, sponge cytology testing, and endoscopy in a sequential manner. We trained machine learning models to predict a composite outcome of high-grade lesions, defined as histology-confirmed high-grade intraepithelial neoplasia and carcinoma of the oesophagus and oesophagogastric junction. The predictive features included 105 cytological and 15 epidemiological features. Model performance was primarily measured with the area under the receiver operating characteristic curve (AUROC) and average precision. The performance measures for cytologists with AI assistance was also assessed.

FINDINGS

Between Jan 1, 2021, and June 30, 2022, 17 498 eligible participants were involved in model training and validation. In the testing set, the AUROC of the final model was 0·960 (95% CI 0·937 to 0·977) and the average precision was 0·482 (0·470 to 0·494). The model achieved similar performance to consensus of cytologists with AI assistance (AUROC 0·955 [95% CI 0·933 to 0·975]; p=0·749; difference 0·005, 95% CI, -0·011 to 0·020). If the model-defined moderate-risk and high-risk groups were referred for endoscopy, the sensitivity was 94·5% (95% CI 88·8 to 97·5), specificity was 91·9% (91·2 to 92·5), and the predictive positive value was 18·4% (15·6 to 21·6), and 90·3% of endoscopies could be avoided. Further validation in community-based screening showed that the AUROC of the model was 0·964 (95% CI 0·920 to 0·990), and 92·8% of endoscopies could be avoided after risk stratification.

INTERPRETATION

We developed a prediction tool with favourable performance for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction. This approach could prevent the need for endoscopy screening in many low-risk individuals and ensure resource optimisation by prioritising high-risk individuals.

FUNDING

Science and Technology Commission of Shanghai Municipality.

摘要

背景

食管鳞癌和食管胃交界腺癌预后不良,早期发现是降低死亡率的关键。然而,早期发现依赖于上消化道内镜检查,但这种方法在人群层面上并不可行。我们旨在开发和验证一种完全自动化的机器学习为基础的预测工具,该工具结合了微创海绵细胞学检查和流行病学危险因素,以便在进行内镜检查之前对食管鳞癌和食管胃交界腺癌进行筛查。

方法

在这项多队列前瞻性研究中,我们招募了在中国 39 家三级或二级医院进行上消化道内镜筛查的年龄在 40-75 岁的参与者,用于模型训练和测试,并纳入了社区筛查参与者进行进一步验证。所有参与者均依次接受问卷调查、海绵细胞学检查和内镜检查。我们训练了机器学习模型来预测一个综合的高级病变结果,定义为组织学证实的高级上皮内瘤变和食管及食管胃交界癌。预测特征包括 105 个细胞学特征和 15 个流行病学特征。模型性能主要通过接受者操作特征曲线下面积(AUROC)和平均精度来衡量。我们还评估了人工智能辅助细胞学医生的表现。

结果

在 2021 年 1 月 1 日至 2022 年 6 月 30 日期间,有 17498 名符合条件的参与者参与了模型训练和验证。在测试集中,最终模型的 AUROC 为 0.960(95%CI 0.937-0.977),平均精度为 0.482(0.470-0.494)。该模型的性能与人工智能辅助的细胞学医生共识相似(AUROC 0.955[95%CI 0.933-0.975];p=0.749;差异 0.005,95%CI,-0.011 至 0.020)。如果将模型定义的中危和高危人群转诊进行内镜检查,其敏感性为 94.5%(95%CI 88.8-97.5),特异性为 91.9%(91.2-92.5),阳性预测值为 18.4%(15.6-21.6),可避免 90.3%的内镜检查。在社区筛查中的进一步验证显示,该模型的 AUROC 为 0.964(95%CI 0.920-0.990),风险分层后可避免 92.8%的内镜检查。

结论

我们开发了一种具有良好性能的预测工具,用于筛查食管鳞癌和食管胃交界腺癌。这种方法可以避免许多低危人群进行内镜筛查的需要,并通过优先考虑高危人群来确保资源的优化利用。

资助

上海市科学技术委员会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验