AP-HP. Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, Créteil, France.
INSERM UMR 955, team I-BIOT, Institute Mondor de Recherche Biomédicale, University of Paris Est Créteil, Créteil, France.
Strahlenther Onkol. 2023 Dec;199(12):1242-1254. doi: 10.1007/s00066-023-02066-w. Epub 2023 Mar 17.
Effects of X‑ray energy levels used for myeloablative lethal total body irradiation (TBI) delivery prior to bone marrow transplantation (BMT) in preclinical mouse models were examined.
In mouse models, single-fraction myeloablative TBI at a lethal dose was delivered using two different X‑ray devices, either low (160 kV cabinet irradiator) or high energy (6 MV linear accelerator), before semi-allogeneic hematopoietic stem-cell transplantation (HSCT) to ensure bone marrow (BM) chimerism, graft-versus-host disease (GVHD), and tumor engraftment. Recipient mice were clinically followed for 80 days after bone marrow transplantation (BMT). Flow cytometry was performed to assess donor chimerism and tumor engraftment in recipient mice.
Both X‑ray irradiation techniques delivered a 10 Gy single fraction of TBI, presented a lethal effect, and could allow near-complete early donor chimerism on day 13. However, low-energy irradiation increased T cells' alloreactivity compared to high-energy irradiation, leading to clinical consequences for GVHD and tumor engraftment outcomes. The alloreactive effect differences might be attributed to the distinction in inflammatory status of irradiated recipients at donor cell infusion (D0). Delaying donor cell administration (D1 after lethal TBI) attenuated T cells' alloreactivity and clinical outcomes in GVHD mouse models.
Different X‑ray irradiation modalities condition T cell alloreactivity in experimental semi-allogeneic BMT. Low-energy X‑ray irradiator induces a post-TBI inflammatory burst and exacerbates alloreactive reactions. This technical and biological information should be considered in interpreting GVHD/ graft-versus-leukemia effect results in mice experimental models of BMT.
在骨髓移植(BMT)前的临床前小鼠模型中,研究了用于骨髓清除性致死性全身照射(TBI)的 X 射线能量水平对小鼠的影响。
在小鼠模型中,使用两种不同的 X 射线设备(低能 160kV 机箱辐照器或高能 6MV 直线加速器),在半同种异体造血干细胞移植(HSCT)前单次给予致死剂量的骨髓清除性 TBI,以确保骨髓(BM)嵌合、移植物抗宿主病(GVHD)和肿瘤植入。受体小鼠在骨髓移植(BMT)后 80 天进行临床随访。采用流式细胞术评估受体小鼠的供体嵌合度和肿瘤植入情况。
两种 X 射线照射技术均能提供单次 10Gy 的 TBI,表现出致死效应,并能在第 13 天实现近乎完全的早期供体嵌合。然而,与高能照射相比,低能照射增加了 T 细胞的同种反应性,导致 GVHD 和肿瘤植入结果的临床后果。同种反应性差异的原因可能归因于照射受体在供体细胞输注(D0)时的炎症状态不同。延迟供体细胞给药(D1 在致死性 TBI 后)可减轻 GVHD 小鼠模型中 T 细胞的同种反应性和临床结局。
不同的 X 射线照射方式可调节实验性半同种异体 BMT 中的 T 细胞同种反应性。低能 X 射线辐照器诱导 TBI 后炎症爆发并加剧同种反应性反应。在解释 BMT 实验小鼠模型中的 GVHD/移植物抗白血病效应结果时,应考虑到这些技术和生物学信息。