College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
Key Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou, 510641, China.
Small. 2023 Jun;19(25):e2300621. doi: 10.1002/smll.202300621. Epub 2023 Mar 18.
Tuning the d-orbital electronic configuration of active sites to achieve well-optimized adsorption strength of oxygen-containing intermediates toward reversible oxygen electrocatalysis is desirable for efficient rechargeable Zn-Air batteries but extremely challenging. Herein, this work proposes to construct a Co@Co O core-shell structure to regulate the d-orbital electronic configuration of Co O for the enhanced bifunctional oxygen electrocatalysis. Theoretical calculations first evidence that electron donation from Co core to Co O shell could downshift the d-band center and simultaneously weak spin state of Co O , result in the well-optimized adsorption strength of oxygen-containing intermediates on Co O , thus contributing a favor way for oxygen reduction/evolution reaction (ORR/OER) bifunctional catalysis. As a proof-of-concept, the Co@Co O embedded in Co, N co-doped porous carbon derived from thickness controlled 2D metal-organic-framework is designed to realize the structure of computational prediction and further improve the performance. The optimized 15Co@Co O /PNC catalyst exhibits the superior bifunctional oxygen electrocatalytic activity with a small potential gap of 0.69 V and a peak power density of 158.5 mW cm in ZABs. Moreover, DFT calculations shows that the more oxygen vacancies on Co O contribute too strong adsorption of oxygen intermediates which limit the bifunctional electrocatalysis, while electron donation in the core-shell structure can alleviate the negative effect and maintain superior bifunctional overpotential.
调节活性位的 d 轨道电子构型,以实现含氧中间物对可充电锌空气电池中氧可逆电催化的优化吸附强度是理想的,但极具挑战性。在此,本工作提出构建 Co@CoO 核壳结构来调节 CoO 的 d 轨道电子构型,以增强双功能氧电催化。理论计算首先证明 Co 核到 CoO 壳的电子给予可以使 d 带中心下移,同时 CoO 的自旋态减弱,导致含氧中间物在 CoO 上的吸附强度得到优化,从而为氧还原/氧析出反应(ORR/OER)双功能催化提供了有利途径。作为概念验证,通过厚度控制的二维金属有机骨架设计并实现了计算预测的结构,将嵌入 Co、N 共掺杂多孔碳中的 Co@CoO 用于进一步提高性能。优化后的 15Co@CoO/PNC 催化剂在 ZAB 中表现出优异的双功能氧电催化活性,具有 0.69V 的小电位间隙和 158.5mW cm 的峰值功率密度。此外,DFT 计算表明,CoO 上更多的氧空位会导致氧中间物的吸附过强,从而限制了双功能电催化,而核壳结构中的电子给予可以减轻这种负面影响并保持优越的双功能过电势。