U.S. Geological Survey, Earthquake Science Center, Moffett Field, CA, USA.
U.S. Geological Survey, Geological Hazards Science Center, Golden, CO, USA.
Nat Commun. 2023 Mar 20;14(1):1546. doi: 10.1038/s41467-023-36840-2.
Faults often form through reactivation of pre-existing structures, developing geometries and mechanical properties specific to the system's geologic inheritance. Competition between fault geometry and other factors (e.g., lithology) to control slip at Earth's surface is an open question that is central to our knowledge of fault processes and seismic hazards. Here we use remote sensing data and field observations to investigate the origin of the 2019 M7.1 Ridgecrest, California, earthquake rupture geometry and test its impact on the slip distribution observed at Earth's surface. Common geometries suggest the fault system evolved through reactivation of structures within the surrounding Independence dike swarm (IDS). Mechanical models testing a range of fault geometries and stress fields indicate that the inherited rupture geometry strongly controlled the M7.1 earthquake slip distribution. These results motivate revisiting the development of other large-magnitude earthquake ruptures (1992 M7.3 Landers, 1999 M7.1 Hector Mine) and tectonic provinces within the IDS.
断层往往是通过重新激活预先存在的结构形成的,这些结构具有特定于系统地质遗产的几何形状和力学性质。断层几何形状与其他因素(例如岩性)在控制地表滑移方面的竞争是一个悬而未决的问题,这是我们了解断层过程和地震危害的核心。在这里,我们使用遥感数据和实地观测来研究 2019 年加利福尼亚里德克里斯特 7.1 级地震的破裂几何形状,并测试其对地表观测到的滑移分布的影响。常见的几何形状表明,断层系统是通过重新激活周围的独立岩脉群(IDS)内的结构而演化的。测试一系列断层几何形状和应力场的力学模型表明,继承的破裂几何形状强烈控制了 7.1 级地震的滑移分布。这些结果促使我们重新审视 IDS 内其他大地震破裂(1992 年 7.3 级兰德斯、1999 年 7.1 级赫克托矿)和构造省的发展。