Suppr超能文献

在钙钛矿/聚合物空穴传输材料界面处实现分子级接触以制备高效太阳能电池。

Tailoring Molecular-Scale Contact at the Perovskite/Polymeric Hole-Transporting Material Interface for Efficient Solar Cells.

机构信息

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA.

出版信息

Adv Mater. 2023 Jun;35(26):e2300647. doi: 10.1002/adma.202300647. Epub 2023 May 5.

Abstract

Perovskite solar cells (PSCs) have delivered a power conversion efficiency (PCE) of more than 25% and incorporating polymers as hole-transporting layers (HTLs) can further enhance the stability of devices toward the goal of commercialization. Among the various polymeric hole-transporting materials, poly(triaryl amine) (PTAA) is one of the promising HTL candidates with good stability; however, the hydrophobicity of PTAA causes problematic interfacial contact with the perovskite, limiting the device performance. Using molecular side-chain engineering, a uniform 2D perovskite interlayer with conjugated ligands, between 3D perovskites and PTAA is successfully constructed. Further, employing conjugated ligands as cohesive elements, perovskite/PTAA interfacial adhesion is significantly improved. As a result, the thin and lateral extended 2D/3D heterostructure enables as-fabricated PTAA-based PSCs to achieve a PCE of 23.7%, improved from the 18% of reference devices. Owing to the increased ion-migration energy barrier and conformal 2D coating, unencapsulated devices with the new ligands exhibit both superior thermal stability under 60 °C heating and moisture stability in ambient conditions.

摘要

钙钛矿太阳能电池 (PSCs) 的功率转换效率 (PCE) 已超过 25%,而将聚合物作为空穴传输层 (HTL) 可以进一步提高器件的稳定性,以实现商业化目标。在各种聚合物空穴传输材料中,聚(三芳基胺) (PTAA) 是一种很有前途的 HTL 候选材料,具有良好的稳定性;然而,PTAA 的疏水性导致与钙钛矿之间存在有问题的界面接触,从而限制了器件性能。通过分子侧链工程,在 3D 钙钛矿和 PTAA 之间成功构建了具有共轭配体的均匀二维钙钛矿中间层。此外,采用共轭配体作为内聚元素,显著提高了钙钛矿/PTAA 界面附着力。结果,薄而横向扩展的 2D/3D 异质结构使得所制备的基于 PTAA 的 PSCs 的 PCE 达到 23.7%,高于参考器件的 18%。由于增加了离子迁移能垒和共形的 2D 涂层,具有新配体的未封装器件在 60°C 加热下表现出更好的热稳定性和环境条件下的湿度稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验