Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA.
Adv Mater. 2023 Jun;35(26):e2300647. doi: 10.1002/adma.202300647. Epub 2023 May 5.
Perovskite solar cells (PSCs) have delivered a power conversion efficiency (PCE) of more than 25% and incorporating polymers as hole-transporting layers (HTLs) can further enhance the stability of devices toward the goal of commercialization. Among the various polymeric hole-transporting materials, poly(triaryl amine) (PTAA) is one of the promising HTL candidates with good stability; however, the hydrophobicity of PTAA causes problematic interfacial contact with the perovskite, limiting the device performance. Using molecular side-chain engineering, a uniform 2D perovskite interlayer with conjugated ligands, between 3D perovskites and PTAA is successfully constructed. Further, employing conjugated ligands as cohesive elements, perovskite/PTAA interfacial adhesion is significantly improved. As a result, the thin and lateral extended 2D/3D heterostructure enables as-fabricated PTAA-based PSCs to achieve a PCE of 23.7%, improved from the 18% of reference devices. Owing to the increased ion-migration energy barrier and conformal 2D coating, unencapsulated devices with the new ligands exhibit both superior thermal stability under 60 °C heating and moisture stability in ambient conditions.
钙钛矿太阳能电池 (PSCs) 的功率转换效率 (PCE) 已超过 25%,而将聚合物作为空穴传输层 (HTL) 可以进一步提高器件的稳定性,以实现商业化目标。在各种聚合物空穴传输材料中,聚(三芳基胺) (PTAA) 是一种很有前途的 HTL 候选材料,具有良好的稳定性;然而,PTAA 的疏水性导致与钙钛矿之间存在有问题的界面接触,从而限制了器件性能。通过分子侧链工程,在 3D 钙钛矿和 PTAA 之间成功构建了具有共轭配体的均匀二维钙钛矿中间层。此外,采用共轭配体作为内聚元素,显著提高了钙钛矿/PTAA 界面附着力。结果,薄而横向扩展的 2D/3D 异质结构使得所制备的基于 PTAA 的 PSCs 的 PCE 达到 23.7%,高于参考器件的 18%。由于增加了离子迁移能垒和共形的 2D 涂层,具有新配体的未封装器件在 60°C 加热下表现出更好的热稳定性和环境条件下的湿度稳定性。