Suppr超能文献

具有可调机械性能和功能化特性的基于生物相容性光可交联聚(D,L-乳酸)/聚(ε-己内酯)材料的熔体电写。

Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.

作者信息

Darroch Conor, Asaro Giuseppe A, Gréant Coralie, Suku Meenakshi, Pien Nele, van Vlierberghe Sandra, Monaghan Michael G

机构信息

Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.

Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland.

出版信息

J Biomed Mater Res A. 2023 Jun;111(6):851-862. doi: 10.1002/jbm.a.37536. Epub 2023 Mar 23.

Abstract

The use of polymeric biomaterials to create tissue scaffolds using additive manufacturing techniques is a well-established practice, owing to the incredible rapidity and complexity in design that modern 3D printing methods can provide. One frontier approach is melt electrowriting (MEW), a technique that takes advantage of electrohydrodynamic phenomena to produce fibers on the scale of 10's of microns with designs capable of high resolution and accuracy. Poly(ε-caprolactone) (PCL) is a material that is commonly used in MEW due to its favorable thermal properties, high stability, and biocompatibility. However, one of the drawbacks of this material is that it lacks the necessary chemical groups which allow covalent crosslinking of additional elements onto its structure. Attempts to functionalise PCL structures therefore often rely on the functional units to be applied externally via coatings or integrally mixed elements. Both can be extremely useful depending on their applications, but can add extra difficulties into the use of the resulting structures. Coatings require careful design and application to prevent rapid degradation, while elements mixed into the polymer melt must deal with the possibilities of phase separation and changes to MEW properties of the unadulterated polymer. With this in mind, this study sought to imbibe functionality to MEW-printed scaffolds using the approach of adding functional units directly, via covalent bonding of functional groups to the polymer itself. To this end, this study employs a recently developed class of polymers called acrylate-endcapped urethane-based polymers (AUPs). The polymer backbone of the specific AUP used consists of a poly(D,L-lactic acid) (PDLLA)/PCL copolymer chain, which is functionalized with 6 acrylate groups, 3 at either end. Through blending of the AUP with PCL, various concentrations of this mixture were used with MEW to produce scaffolds that possessed acrylate groups on their surface. Using UV crosslinking, these groups were tagged with Fluorescein-o-Acrylate to verify that PDLLA/PCL AUP/PCL blends facilitate the direct covalent bonding of external agents directly onto the MEW material. Blending of the AUP with PCL increases the scaffold's stiffness and ultimate strength. Finally, blends were proven to be highly biocompatible, with cells attaching and proliferating readily at day 3 and 7 post seeding. Through this work, PDLLA/PCL AUP/PCL blends clearly demonstrated as a biocompatible material that can be processed using MEW to create functionalised tissue scaffolds.

摘要

利用增材制造技术使用聚合物生物材料来制造组织支架是一种成熟的做法,这得益于现代3D打印方法能够提供的惊人速度和设计复杂性。一种前沿方法是熔体静电纺丝(MEW),该技术利用电流体动力学现象来生产几十微米尺度的纤维,其设计具有高分辨率和高精度。聚(ε-己内酯)(PCL)是一种由于其良好的热性能、高稳定性和生物相容性而常用于熔体静电纺丝的材料。然而,这种材料的缺点之一是它缺乏必要的化学基团,这些基团允许在其结构上共价交联其他元素。因此,使PCL结构功能化的尝试通常依赖于通过涂层外部施加功能单元或整体混合元素。根据它们的应用,两者都可能非常有用,但会给所得结构的使用增加额外的困难。涂层需要仔细设计和应用以防止快速降解,而混入聚合物熔体中的元素必须应对相分离的可能性以及未掺杂聚合物的熔体静电纺丝性能的变化。考虑到这一点,本研究试图通过将功能单元直接添加的方法,即通过官能团与聚合物本身的共价键合,使熔体静电纺丝打印的支架具有功能。为此,本研究采用了最近开发的一类称为丙烯酸酯封端的聚氨酯基聚合物(AUPs)的聚合物。所使用的特定AUP的聚合物主链由聚(D,L-乳酸)(PDLLA)/PCL共聚物链组成,该链用6个丙烯酸酯基团官能化,两端各3个。通过将AUP与PCL混合,将这种混合物的各种浓度与熔体静电纺丝一起使用,以生产表面具有丙烯酸酯基团的支架。使用紫外线交联,这些基团用荧光素-o-丙烯酸酯标记,以验证PDLLA/PCL AUP/PCL共混物有助于外部试剂直接与熔体静电纺丝材料进行直接共价键合。AUP与PCL的混合增加了支架的硬度和极限强度。最后,共混物被证明具有高度生物相容性,细胞在接种后第3天和第7天很容易附着并增殖。通过这项工作,PDLLA/PCL AUP/PCL共混物清楚地证明是一种生物相容性材料,可以使用熔体静电纺丝进行加工以制造功能化的组织支架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验