Suppr超能文献

利用超级文件夹 GFP(sfGFP)系统研究植物过氧化物酶体蛋白的输入。

Using the Superfolder GFP (sfGFP) System to Study Plant Peroxisomal Protein Import.

机构信息

Centre for Plant Sciences and School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.

Department of Biological Sciences, Mu'tah University, Karak, Jordan.

出版信息

Methods Mol Biol. 2023;2643:435-443. doi: 10.1007/978-1-0716-3048-8_31.

Abstract

The fusing of a protein of interest to a fluorescent protein followed by fluorescence microscopy is a very common method of determining protein localization and dynamics. However even small fluorescent proteins can be large enough to affect protein folding and localization, therefore the ability to use a smaller tag but still be able to detect a fluorescent signal in live cell imaging experiments is extremely valuable. The self-assembling split sfGFP system allows the fusion of the protein of interest with the 11th β-strand of super-folder GFP (sfGFP11) which is only 13 amino acids long. When this construct is delivered into protoplasts made from transgenic plants expressing sfGFP1-10 (sfGFP1-10) targeted to the desired compartment, the two parts assemble and fluorescence is reconstituted that can be detected by confocal laser scanning microscopy. Here, we present the application of this method for protein targeting to plant peroxisomes using Catalase (CAT2 of Arabidopsis thaliana) as an example. As peroxisomes are able to import folded and oligomeric proteins, careful consideration of appropriate controls is also required to ensure correct interpretation of the results.

摘要

将感兴趣的蛋白质与荧光蛋白融合,然后进行荧光显微镜观察,是一种确定蛋白质定位和动态的常用方法。然而,即使是小的荧光蛋白也可能大到足以影响蛋白质折叠和定位,因此,能够使用更小的标签,但仍然能够在活细胞成像实验中检测到荧光信号,这是非常有价值的。自组装的 sfGFP 系统允许将感兴趣的蛋白质与超折叠 GFP(sfGFP11)的第 11 个 β 链融合,sfGFP11 只有 13 个氨基酸长。当将这种构建体递送到表达 sfGFP1-10(靶向所需隔室的 sfGFP1-10)的转基因植物原生质体中时,两个部分组装在一起,并重新构成可以通过共焦激光扫描显微镜检测到的荧光。在这里,我们以拟南芥过氧化氢酶(CAT2)为例,介绍了这种方法在植物过氧化物酶体蛋白质靶向中的应用。由于过氧化物酶体能够导入折叠和寡聚蛋白质,因此还需要仔细考虑适当的对照,以确保正确解释结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验