室温下金修饰的TiO基挥发性有机化合物传感器的灵敏度增强

The sensitivity enhancement of TiO-based VOCs sensor decorated by gold at room temperature.

作者信息

Shooshtari Mostafa, Vollebregt Sten, Vaseghi Yas, Rajati Mahshid, Pahlavan Saeideh

机构信息

Laboratory of Electronic Components, Technology, and Materials, Delft University of Technology, 2628 CD Delft, The Netherlands.

Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran.

出版信息

Nanotechnology. 2023 Apr 6;34(25). doi: 10.1088/1361-6528/acc6d7.

Abstract

Detection of hazardous toxic gases for air pollution monitoring and medical diagnosis has attracted the attention of researchers in order to realize sufficiently sensitive gas sensors. In this paper, we fabricated and characterized a Titanium dioxide (TiO)-based gas sensor enhanced using the gold nanoparticles. Thermal oxidation and sputter deposition methods were used to synthesize fabricated gas sensor. X-ray diffraction analysis was used to determine the anatase structure of TiOsamples. It was found that the presence of gold nanoparticles on the surface of TiOenhances the sensitivity response of gas sensors by up to about 40%. The fabricated gas sensor showed a sensitivity of 1.1, 1.07 and 1.03 to 50 ppm of acetone, methanol and ethanol vapors at room temperature, respectively. Additionally, the gold nanoparticles reduce 50 s of response time (about 50% reduction) in the presence of 50 ppm ethanol vapor; and we demonstrated that the recovery time of the gold decorated TiOsensor is less than 40 s. Moreover, we explain that the improved performance depends on the adsorption-desorption mechanism, and the chemical sensitization and electronic sensitization of gold nanoparticles.

摘要

为了实现足够灵敏的气体传感器,用于空气污染监测和医学诊断的有害有毒气体检测已引起研究人员的关注。在本文中,我们制备并表征了一种使用金纳米颗粒增强的二氧化钛(TiO)基气体传感器。采用热氧化和溅射沉积方法合成所制备的气体传感器。利用X射线衍射分析确定TiO样品的锐钛矿结构。结果发现,TiO表面存在金纳米颗粒可使气体传感器的灵敏度响应提高约40%。所制备的气体传感器在室温下对50 ppm的丙酮、甲醇和乙醇蒸汽的灵敏度分别为1.1、1.07和1.03。此外,在存在50 ppm乙醇蒸汽的情况下,金纳米颗粒将响应时间缩短了50 s(约减少50%);并且我们证明了金修饰的TiO传感器的恢复时间小于40 s。此外,我们解释了性能的改善取决于吸附-解吸机制以及金纳米颗粒的化学敏化和电子敏化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索