Li Xin, Chen Haojie, Zhang Lili, Wang Zhiguo, Wu Shufang, Ma Jinxia
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
J Colloid Interface Sci. 2023 Jul;641:539-552. doi: 10.1016/j.jcis.2023.03.096. Epub 2023 Mar 20.
Using renewable biomass resources to regulate the growth and properties of catalysts is sustainable nanotechnology for achieving efficient photocatalysis and recycling. This work suggested a way to produce paper-based photocatalysts and resize the embedded zinc oxide (ZnO) flowers. The combination of experimental analysis and theoretical simulations demonstrated that small pores of the branching fiber network enhanced the interfacial interaction between ZnO flowers and cellulose fibers, thereby improving mechanical properties and optimizing flower structure. The interaction energy and electron density difference (EDD) simulation results demonstrated that the ZnO/cellulose interface structure shares significant attraction and charge transfer. Cellulose fibers ground for 20 cycles (CFG20) possessed dense branching fiber network and loaded with the smallest ZnO flowers, achieving a balance of strong mechanical properties and reaction efficiency. Remarkably, ZnO/CFG20 paper-based catalyst indicated strong photodegradation efficiency (100% for methyl orange, 100% for phenol, and 85.23% for aniline) and excellent reusability. This work will pave the way for the green regulation of catalysts.
利用可再生生物质资源来调控催化剂的生长和性能是实现高效光催化及循环利用的可持续纳米技术。这项工作提出了一种制备纸质光催化剂并调整嵌入的氧化锌(ZnO)花状结构大小的方法。实验分析与理论模拟相结合表明,分支纤维网络的小孔增强了ZnO花与纤维素纤维之间的界面相互作用,从而改善了机械性能并优化了花状结构。相互作用能和电子密度差(EDD)模拟结果表明,ZnO/纤维素界面结构具有显著的吸引力和电荷转移。研磨20个循环的纤维素纤维(CFG20)具有致密的分支纤维网络且负载的ZnO花最小,实现了强机械性能与反应效率的平衡。值得注意的是,ZnO/CFG20纸质催化剂显示出很强的光降解效率(甲基橙为100%,苯酚为100%,苯胺为85.23%)和出色的可重复使用性。这项工作将为催化剂的绿色调控铺平道路。