Suppr超能文献

一种用于自动、高精度的家畜运动学诊断筛查的工作流程。

A workflow for automatic, high precision livestock diagnostic screening of locomotor kinematics.

作者信息

Mielke Falk, Van Ginneken Chris, Aerts Peter

机构信息

Functional Morphology, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium.

Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.

出版信息

Front Vet Sci. 2023 Mar 7;10:1111140. doi: 10.3389/fvets.2023.1111140. eCollection 2023.

Abstract

Locomotor kinematics have been challenging inputs for automated diagnostic screening of livestock. Locomotion is a highly variable behavior, and influenced by subject characteristics (e.g., body mass, size, age, disease). We assemble a set of methods from different scientific disciplines, composing an automatic, high through-put workflow which can disentangle behavioral complexity and generate precise individual indicators of non-normal behavior for application in diagnostics and research. For this study, piglets () were filmed from lateral perspective during their first 10 h of life, an age at which maturation is quick and body mass and size have major consequences for survival. We then apply deep learning methods for point digitization, calculate joint angle profiles, and apply information-preserving transformations to retrieve a multivariate kinematic data set. We train probabilistic models to infer subject characteristics from kinematics. Model accuracy was validated for strides from piglets of normal birth weight (i.e., the category it was trained on), but the models infer the body mass and size of low birth weight (LBW) piglets (which were left out of training, out-of-sample inference) to be "normal." The age of some (but not all) low birth weight individuals was underestimated, indicating developmental delay. Such individuals could be identified automatically, inspected, and treated accordingly. This workflow has potential for automatic, precise screening in livestock management.

摘要

运动学一直是家畜自动诊断筛查的具有挑战性的输入内容。运动是一种高度可变的行为,并且受个体特征(例如体重、体型、年龄、疾病)影响。我们整合了来自不同科学学科的一组方法,构建了一个自动的、高通量的工作流程,该流程可以解开行为复杂性,并生成用于诊断和研究的非正常行为的精确个体指标。在本研究中,仔猪在出生后的前10小时从侧面进行拍摄,这个年龄段成熟迅速,体重和体型对生存有重大影响。然后我们应用深度学习方法进行点数字化,计算关节角度轮廓,并应用信息保留变换来获取多变量运动学数据集。我们训练概率模型以从运动学中推断个体特征。模型准确性针对正常出生体重仔猪(即其训练所基于的类别)的步幅进行了验证,但这些模型将低出生体重(LBW)仔猪(未纳入训练,样本外推断)的体重和体型推断为“正常”。一些(但不是全部)低出生体重个体的年龄被低估,表明发育延迟。这样的个体可以被自动识别、检查并进行相应治疗。这种工作流程在畜牧管理中具有自动、精确筛查的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96e9/10028250/31a55a5520ef/fvets-10-1111140-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验