Dept. of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India.
Dept. of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India.
Int J Biol Macromol. 2023 May 31;238:124120. doi: 10.1016/j.ijbiomac.2023.124120. Epub 2023 Mar 22.
Supply of safe drinking water is a high-risk challenge faced internationally. Hybrid technologies involving nanomaterials can offer possible solutions to this research involving natural biopolymers. Porous chitosan with a high specific surface area has promising properties but its use as a membrane component in water purification is still rarely reported. Graphitic carbon nitride (g-CN) is a carbon nitride allotrope with a graphene-like layered structure that gifts unfamiliar physicochemical properties due to the presence of s-triazine fragments. It is a metal-free semiconductor with a band gap of ∼2.7 eV to ∼3.7 eV; which shows better visible light-activated photocatalyst properties. This work aims at synthesizing graphitic carbon nitride-biopolymer composite and exploring its properties in the field of wastewater treatment. The samples were synthesized via a soft chemical process with urea, as the source material. The flake-like morphology is displayed in the microstructural SEM image. The composition of the material was analyzed using EDS. Thermogram shows that the material is stable up to 500 °C and also confirms the formation of graphitic carbon nitride. In XRD spectra the intensity reduction shows the chitosan inclusion at the nitride site. The band gap of the prepared material was identified to be 2.3, 2.4 eV. The structural properties were analyzed using Fourier Transform Infrared Spectrometer and Raman spectroscopy. FTIR spectra and Raman spectra indicate the stretching vibration modes of CN and CN heterocycles and chitosan inclusion in the carbon nitride network. The photocatalytic activity was done in sunlight and a UV lamp with different dyes for doped and undoped g-CN. The doped (Porous/Non-porous chitosan) g-CN showed faster dye degradation in sunlight compared to UV light. A biomolecular interaction study was done using Bovine serum albumin. It shows the material interaction with the BSA protein. The anti-microbial activity was performed on the Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli by disk diffusion method, the chitosan doped g-CN showed good inhibitions against bacterial growth. The current work reveals the impact of nanoscale chitosan nanostructures doped on the optical, microstructural, catalytic, and antimicrobial properties of g-CN nanosheets. This work provides new research options for nanocomposite-based photocatalytic nanomaterial g-CN so that the quality of contaminated water could be improved.
安全饮用水的供应是国际上面临的一项高风险挑战。涉及纳米材料的混合技术可为涉及天然生物聚合物的这项研究提供可能的解决方案。具有高比表面积的多孔壳聚糖具有有前途的特性,但作为水净化膜组件的用途仍很少报道。石墨相氮化碳(g-CN)是一种具有类石墨烯层状结构的氮化碳同素异形体,由于存在三嗪片段,因此具有独特的物理化学性质。它是一种无金属半导体,带隙为 2.7 eV 至 3.7 eV;表现出更好的可见光激活光催化剂性能。这项工作旨在合成石墨相氮化碳-生物聚合物复合材料,并探索其在废水处理领域的性质。通过软化学过程以尿素为原料合成样品。在微观结构 SEM 图像中显示出片状形态。使用 EDS 分析材料的组成。热图表明,该材料在 500°C 以下稳定,并确认了石墨相氮化碳的形成。在 XRD 光谱中,强度降低表明氮化物位点存在壳聚糖。制备材料的带隙被确定为 2.3、2.4 eV。使用傅里叶变换红外光谱仪和拉曼光谱仪分析结构特性。FTIR 光谱和拉曼光谱表明,在氮化碳网络中存在 CN 和 CN 杂环以及壳聚糖的伸缩振动模式。在阳光和不同染料的 UV 灯下进行光催化活性,对掺杂和未掺杂 g-CN 进行了研究。与 UV 光相比,掺杂(多孔/非多孔壳聚糖)g-CN 在阳光下显示出更快的染料降解。使用牛血清白蛋白进行了生物分子相互作用研究。它显示了材料与 BSA 蛋白的相互作用。通过圆盘扩散法对金黄色葡萄球菌、铜绿假单胞菌和大肠杆菌进行了抗菌活性测试,壳聚糖掺杂 g-CN 对细菌生长表现出良好的抑制作用。目前的工作揭示了纳米级壳聚糖纳米结构掺杂对 g-CN 纳米片的光学、微观结构、催化和抗菌性能的影响。这项工作为基于纳米复合材料的光催化纳米材料 g-CN 提供了新的研究选择,以便提高受污染水的质量。