Suppr超能文献

基于矢量图的深度神经网络训练方法,用于设计超材料宽带偏振转换器。

Deep neural network training method based on vectorgraphs for designing of metamaterial broadband polarization converters.

机构信息

School of Microelectronics (School of Integrated Circuits), Nanjing University of Science and Technology, Nanjing, 210094, China.

Institute of Deep Perception Technology, Wuxi, 214000, China.

出版信息

Sci Rep. 2023 Mar 27;13(1):5009. doi: 10.1038/s41598-023-32142-1.

Abstract

In this work, we proposed a method of extracting feature parameters for deep neural network prediction based on the vectorgraph storage format, which can be applied to the design of electromagnetic metamaterials with sandwich structures. Compared to current methods of manually extracting feature parameters, this method can automatically and precisely extract the feature parameters of arbitrary two-dimensional surface patterns of the sandwich structure. The position and size of surface patterns can be freely defined, and the surface patterns can be easily scaled, rotated, translated, or transformed in other ways. Compared to the pixel graph feature extraction method, this method can adapt to very complex surface pattern design in a more efficient way. And the response band can be easily shifted by scaling the designed surface pattern. To illustrate and verify the method, a 7-layer deep neural network was built to design a metamaterial broadband polarization converter. Prototype samples were fabricated and tested to verify the accuracy of the prediction results. In general, the method is potentially applicable to the design of different kinds of sandwich-structure metamaterials, with different functions and in different frequency bands.

摘要

在这项工作中,我们提出了一种基于矢量图存储格式的深度神经网络预测特征参数提取方法,可应用于具有夹层结构的电磁超材料设计。与当前手动提取特征参数的方法相比,这种方法可以自动、精确地提取夹层结构任意二维表面图案的特征参数。表面图案的位置和大小可以自由定义,并且表面图案可以轻松缩放、旋转、平移或以其他方式变换。与像素图特征提取方法相比,这种方法可以更有效地适应非常复杂的表面图案设计。并且通过缩放设计的表面图案,可以轻松地改变响应带。为了说明和验证该方法,构建了一个 7 层深度神经网络来设计超材料宽带极化转换器。制作了原型样品并进行了测试,以验证预测结果的准确性。总的来说,该方法有望应用于不同类型的夹层结构超材料的设计,具有不同的功能和不同的频率范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9af/10042994/d68e03cc97d3/41598_2023_32142_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验