Suppr超能文献

微观结构对反应堆堆芯材料辐照蠕变的影响

Microstructural Effects on Irradiation Creep of Reactor Core Materials.

作者信息

Griffiths Malcolm

机构信息

Department of Mechanical & Aerospace Engineering, Carleton University, Ottawa, ON K1S5B6, Canada.

Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L3N6, Canada.

出版信息

Materials (Basel). 2023 Mar 13;16(6):2287. doi: 10.3390/ma16062287.

Abstract

The processes that control irradiation creep are dependent on the temperature and the rate of production of freely migrating point defects, affecting both the microstructure and the mechanisms of mass transport. Because of the experimental difficulties in studying irradiation creep, many different hypothetical models have been developed that either favour a dislocation slip or a mass transport mechanism. Irradiation creep mechanisms and models that are dependent on the microstructure, which are either fully or partially mechanistic in nature, are described and discussed in terms of their ability to account for the in-reactor creep behaviour of various nuclear reactor core materials. A rate theory model for creep of Zr-2.5Nb pressure tubing in CANDU reactors incorporating the as-fabricated microstructure has been developed that gives good agreement with measurements for tubes manufactured by different fabrication routes having very different microstructures. One can therefore conclude that for Zr-alloys at temperatures < 300 °C and stresses < 150 MPa, diffusional mass transport is the dominant creep mechanism. The most important microstructural parameter controlling irradiation creep for these conditions is the grain structure. Austenitic alloys follow similar microstructural dependencies as Zr-alloys, but up to higher temperature and stress ranges. The exception is that dislocation slip is dominant in austenitic alloys at temperatures < 100 °C because there are few barriers to dislocation slip at these low temperatures, which is linked to the enhanced recombination of irradiation-induced point defects.

摘要

控制辐照蠕变的过程取决于温度和自由迁移点缺陷的产生速率,这会影响微观结构和质量传输机制。由于研究辐照蠕变存在实验困难,因此已经开发了许多不同的假设模型,这些模型要么支持位错滑移机制,要么支持质量传输机制。本文将描述和讨论依赖于微观结构的辐照蠕变机制和模型,这些机制和模型本质上要么是完全机械的,要么是部分机械的,并根据它们解释各种核反应堆堆芯材料在反应堆内蠕变行为的能力进行讨论。已经开发了一种用于CANDU反应堆中Zr-2.5Nb压力管蠕变的速率理论模型,该模型考虑了制造时的微观结构,与通过具有非常不同微观结构的不同制造路线制造的管材的测量结果具有良好的一致性。因此可以得出结论,对于温度<300°C且应力<150MPa的Zr合金,扩散质量传输是主要的蠕变机制。在这些条件下,控制辐照蠕变的最重要微观结构参数是晶粒结构。奥氏体合金遵循与Zr合金类似的微观结构依赖性,但温度和应力范围更高。例外情况是,在温度<100°C时,奥氏体合金中位错滑移占主导地位,因为在这些低温下位错滑移几乎没有障碍,这与辐照诱导点缺陷的增强复合有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30cc/10054019/7136d47e300e/materials-16-02287-g001.jpg

相似文献

1
Microstructural Effects on Irradiation Creep of Reactor Core Materials.
Materials (Basel). 2023 Mar 13;16(6):2287. doi: 10.3390/ma16062287.
3
Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
J Microsc. 2019 Apr;274(1):3-12. doi: 10.1111/jmi.12776. Epub 2018 Dec 17.
4
Structural Evolution and Transitions of Mechanisms in Creep Deformation of Nanocrystalline FeCrAl Alloys.
Nanomaterials (Basel). 2023 Feb 5;13(4):631. doi: 10.3390/nano13040631.
6
Ambient-temperature time-dependent deformation of cast and additive manufactured Al-Cu-Mg-Ag-TiB (A205).
Micron. 2022 May;156:103246. doi: 10.1016/j.micron.2022.103246. Epub 2022 Mar 17.
7
8
Nanocluster Evolution in D9 Austenitic Steel under Neutron and Proton Irradiation.
Materials (Basel). 2023 Jul 6;16(13):4852. doi: 10.3390/ma16134852.
9
Creep Resistance of S304H Austenitic Steel Processed by High-Pressure Sliding.
Materials (Basel). 2022 Jan 3;15(1):331. doi: 10.3390/ma15010331.
10
Tensile creep behavior and mechanism of CoCrFeMnNi high entropy alloy.
Micron. 2021 Nov;150:103144. doi: 10.1016/j.micron.2021.103144. Epub 2021 Sep 8.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验