Zafar S S, Alfaleh Ayman, Zaib A, Ali Farhan, Faizan M, Abed Ahmed M, Elattar Samia, Khan M Ijaz
Department of Mathematical Sciences, Federal Urdu University of Arts, Sciences & Technology, Karachi 75300, Pakistan.
College of Engineering, Industrial Engineering Department, Umm Al-Qura University, Al-Khalidiya District, Al-Qunfudhah City 28821, Saudi Arabia.
Micromachines (Basel). 2023 Feb 27;14(3):559. doi: 10.3390/mi14030559.
The physiological systems and biological applications that have arisen during the past 15 years depend heavily on the microscale and nanoscale fluxes. Microchannels have been utilized to develop new diagnostic assays, examine cell adhesion and molecular transport, and replicate the fluid flow microenvironment of the circulatory system. The various uses of MHD boundary flow in engineering and technology are extensive, ranging from MHD power generators and the polymer industry to MHD flow meters and pumps and the spinning of filaments. In this investigation, the (Magnetohydrodynamic) MHD flow of Prandtl nanofluid is investigated along with mixed convection, energy activation, microorganism, and chemical reaction. The flow model is considered through partial differential equations in dimensionless form which is then integrated numerically via considering the Bvp4c technique. The outcome is numerous emerging physical parameters over velocity profile, temperature, mass concentration, and microorganism with the separate pertinent quantities such as the Prandtl fluid parameter, elastic fluid parameter, magnetic field, mixed convection parameter, activation energy, chemical reaction, Brownian motion, thermophoretic force, Prandtl number, and Schmidt number. The friction factor, rate of heat transfer and Sherwood number, and density of microbes are revealed numerically and graphically. The outcomes indicate that the Prandtl fluid parameter and elastic fluid parameter tend to enhance the velocity profile. It is also noted that the Prandtl fluid parameter depreciates the thermal rate with the addition of the concentration profile while the opposite trend is recorded for activation energy. Obtained numerical outcomes are correspondingly compared with the current statistics in limiting cases and a close match is obtained.
在过去15年中出现的生理系统和生物应用在很大程度上依赖于微尺度和纳米尺度的通量。微通道已被用于开发新的诊断分析方法、研究细胞粘附和分子运输,以及复制循环系统的流体流动微环境。磁流体动力学(MHD)边界流在工程和技术中的各种用途广泛,从MHD发电机、聚合物工业到MHD流量计、泵以及长丝纺丝。在本研究中,对普朗特纳米流体的磁流体动力学(MHD)流动以及混合对流、能量活化、微生物和化学反应进行了研究。通过无量纲形式的偏微分方程来考虑流动模型,然后通过考虑Bvp4c技术进行数值积分。结果得到了速度分布、温度、质量浓度和微生物等众多新出现的物理参数,以及诸如普朗特流体参数、弹性流体参数、磁场、混合对流参数、活化能、化学反应、布朗运动、热泳力、普朗特数和施密特数等单独的相关量。通过数值和图形揭示了摩擦系数、传热速率、舍伍德数和微生物密度。结果表明,普朗特流体参数和弹性流体参数倾向于增强速度分布。还注意到,普朗特流体参数在增加浓度分布的同时会降低热速率,而活化能则呈现相反的趋势。在极限情况下,将获得的数值结果与当前统计数据进行了相应比较,得到了密切的匹配。