Badiee Mohsen, Kenet Adam L, Ganser Laura R, Paul Tapas, Myong Sua, Leung Anthony K L
bioRxiv. 2023 Mar 13:2023.03.11.531013. doi: 10.1101/2023.03.11.531013.
Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a post-translational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na , Mg , Ca , and spermine). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR.
Poly(ADP-ribose) (PAR) is an RNA-like homopolymer that regulates DNA repair, RNA metabolism, and biomolecular condensate formation. Dysregulation of PAR results in cancer and neurodegeneration. Although discovered in 1963, fundamental properties of this therapeutically important polymer remain largely unknown. Biophysical and structural analyses of PAR have been exceptionally challenging due to the dynamic and repetitive nature. Here, we present the first single-molecule biophysical characterization of PAR. We show that PAR is stiffer than DNA and RNA per unit length. Unlike DNA and RNA which undergoes gradual compaction, PAR exhibits an abrupt switch-like bending as a function of salt concentration and by protein binding. Our findings points to unique physical properties of PAR that may drive recognition specificity for its function.
聚(ADP - 核糖)(PAR)是一种二磷酸腺苷核糖的同聚物,作为翻译后修饰添加到蛋白质上以调节众多细胞过程。PAR还作为大分子复合物(包括生物分子凝聚物)中蛋白质结合的支架。目前尚不清楚PAR如何实现特异性分子识别。在这里,我们使用单分子荧光共振能量转移(smFRET)来评估不同阳离子条件下PAR的柔韧性。我们证明,与RNA和DNA相比,PAR具有更长的持久长度,并且在各种阳离子(Na⁺、Mg²⁺、Ca²⁺和精胺)的生理相关浓度下,从伸展状态到紧凑状态的转变更为急剧。我们表明PAR的压缩程度取决于阳离子的浓度和价态。此外,内在无序蛋白FUS也作为大分子阳离子使PAR压缩。综上所述,我们的研究揭示了PAR分子的固有刚性,其响应阳离子结合而经历类似开关的压缩。这项研究表明阳离子环境可能驱动PAR的识别特异性。
聚(ADP - 核糖)(PAR)是一种类似RNA的同聚物,可调节DNA修复、RNA代谢和生物分子凝聚物形成。PAR失调会导致癌症和神经退行性疾病。尽管在1963年就已发现,但这种具有治疗重要性的聚合物的基本性质在很大程度上仍然未知。由于其动态和重复的性质,PAR的生物物理和结构分析极具挑战性。在这里,我们展示了PAR的首次单分子生物物理表征。我们表明PAR每单位长度比DNA和RNA更硬。与DNA和RNA逐渐压缩不同,PAR随着盐浓度和蛋白质结合表现出突然的类似开关的弯曲。我们的发现指出了PAR独特的物理性质,这可能驱动其功能的识别特异性。