Suppr超能文献

人类新皮层中的发育异构体多样性揭示神经精神疾病风险机制。

Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms.

作者信息

Patowary Ashok, Zhang Pan, Jops Connor, Vuong Celine K, Ge Xinzhu, Hou Kangcheng, Kim Minsoo, Gong Naihua, Margolis Michael, Vo Daniel, Wang Xusheng, Liu Chunyu, Pasaniuc Bogdan, Li Jingyi Jessica, Gandal Michael J, de la Torre-Ubieta Luis

出版信息

bioRxiv. 2023 Oct 11:2023.03.25.534016. doi: 10.1101/2023.03.25.534016.

Abstract

UNLABELLED

RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders, yet the role of cell-type-specific splicing or transcript-isoform diversity during human brain development has not been systematically investigated. Here, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 unique isoforms, of which 72.6% are novel (unannotated in Gencode-v33), and uncovered a substantial contribution of transcript-isoform diversity, regulated by RNA binding proteins, in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to re-prioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders.

ONE-SENTENCE SUMMARY: A cell-specific atlas of gene isoform expression helps shape our understanding of brain development and disease.

STRUCTURED ABSTRACT

The development of the human brain is regulated by precise molecular and genetic mechanisms driving spatio-temporal and cell-type-specific transcript expression programs. Alternative splicing, a major mechanism increasing transcript diversity, is highly prevalent in the human brain, influences many aspects of brain development, and has strong links to neuropsychiatric disorders. Despite this, the cell-type-specific transcript-isoform diversity of the developing human brain has not been systematically investigated. Understanding splicing patterns and isoform diversity across the developing neocortex has translational relevance and can elucidate genetic risk mechanisms in neurodevelopmental disorders. However, short-read sequencing, the prevalent technology for transcriptome profiling, is not well suited to capturing alternative splicing and isoform diversity. To address this, we employed third-generation long-read sequencing, which enables capture and sequencing of complete individual RNA molecules, to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution. We profiled microdissected GZ and CP regions of post-conception week (PCW) 15-17 human neocortex in bulk and at single-cell resolution across six subjects using high-fidelity long-read sequencing (PacBio IsoSeq). We identified 214,516 unique isoforms, of which 72.6% were novel (unannotated in Gencode), and >7,000 novel exons, expanding the proteome by 92,422 putative proteoforms. We uncovered thousands of isoform switches during cortical neurogenesis predicted to impact RNA regulatory domains or protein structure and implicating previously uncharacterized RNA-binding proteins in cellular identity and neuropsychiatric disease. At the single-cell level, early-stage excitatory neurons exhibited the greatest isoform diversity, and isoform-centric single-cell clustering led to the identification of previously uncharacterized cell states. We systematically assessed the contribution of transcriptomic features, and localized cell and spatio-temporal transcript expression signatures across neuropsychiatric disorders, revealing predominant enrichments in dynamic isoform expression and utilization patterns and that the number and complexity of isoforms per gene is strongly predictive of disease. Leveraging this resource, we re-prioritized thousands of rare de novo risk variants associated with autism spectrum disorders (ASD), intellectual disability (ID), and neurodevelopmental disorders (NDDs), more broadly, to potentially more severe consequences and revealed a larger proportion of cryptic splice variants with the expanded transcriptome annotation provided in this study. Our study offers a comprehensive landscape of isoform diversity in the human neocortex during development. This extensive cataloging of novel isoforms and splicing events sheds light on the underlying mechanisms of neurodevelopmental disorders and presents an opportunity to explore rare genetic variants linked to these conditions. The implications of our findings extend beyond fundamental neuroscience, as they provide crucial insights into the molecular basis of developmental brain disorders and pave the way for targeted therapeutic interventions. To facilitate exploration of this dataset we developed an online portal ( https://sciso.gandallab.org/ ).

摘要

未标注

RNA剪接在大脑中高度普遍,且与神经精神疾病密切相关,但在人类大脑发育过程中,细胞类型特异性剪接或转录本异构体多样性的作用尚未得到系统研究。在此,我们利用单分子长读测序技术,在组织和单细胞分辨率水平上,对发育中的人类新皮质生发区(GZ)和皮质板(CP)区域的全长转录组进行了深度剖析。我们鉴定出214,516种独特的异构体,其中72.6%是新的(在Gencode-v33中未注释),并发现由RNA结合蛋白调控的转录本异构体多样性在确定发育中的新皮质细胞身份方面发挥了重要作用。我们利用这种以异构体为中心的全面基因注释,重新对数千个罕见的新生风险变异进行了优先级排序,并阐明了神经精神疾病的遗传风险机制。

一句话总结

基因异构体表达的细胞特异性图谱有助于塑造我们对大脑发育和疾病的理解。

结构化摘要

人类大脑的发育受精确的分子和遗传机制调控,这些机制驱动着时空和细胞类型特异性的转录表达程序。可变剪接作为增加转录本多样性的主要机制,在人类大脑中高度普遍,影响大脑发育的许多方面,并与神经精神疾病密切相关。尽管如此,发育中的人类大脑的细胞类型特异性转录本异构体多样性尚未得到系统研究。了解发育中的新皮质的剪接模式和异构体多样性具有转化意义,并且可以阐明神经发育障碍中的遗传风险机制。然而,短读测序作为转录组分析的常用技术,并不适合捕获可变剪接和异构体多样性。为了解决这个问题,我们采用了第三代长读测序技术,该技术能够捕获和测序完整的单个RNA分子,以在组织和单细胞分辨率水平上,对发育中的人类新皮质生发区(GZ)和皮质板(CP)区域的全长转录组进行深度剖析。我们使用高保真长读测序(PacBio IsoSeq)技术,对6名受试者孕后第15-17周人类新皮质经显微切割的GZ和CP区域进行了整体和单细胞分辨率的分析。我们鉴定出214,516种独特的异构体,其中72.6%是新的(在Gencode中未注释),以及>7000个新外显子,通过92,422种假定的蛋白质异构体扩展了蛋白质组。我们发现了数千个在皮质神经发生过程中的异构体转换,预计这些转换会影响RNA调控域或蛋白质结构,并涉及到细胞身份和神经精神疾病中以前未被表征的RNA结合蛋白。在单细胞水平上,早期兴奋性神经元表现出最大的异构体多样性,以异构体为中心的单细胞聚类导致了以前未被表征的细胞状态的识别。我们系统地评估了转录组特征的贡献,并定位了跨神经精神疾病的细胞和时空转录表达特征,揭示了动态异构体表达和利用模式中的主要富集,以及每个基因异构体的数量和复杂性对疾病具有很强的预测性。利用这一资源,我们重新对数千个与自闭症谱系障碍(ASD)、智力残疾(ID)和更广泛的神经发育障碍(NDDs)相关的罕见新生风险变异进行了优先级排序,以潜在地发现更严重的后果,并揭示了本研究中提供的扩展转录组注释中更大比例的隐蔽剪接变异。我们的研究提供了发育过程中人类新皮质异构体多样性的全面图景。对新异构体和剪接事件的广泛编目揭示了神经发育障碍的潜在机制,并为探索与这些疾病相关的罕见遗传变异提供了机会。我们研究结果的影响超出了基础神经科学领域,因为它们为发育性脑疾病的分子基础提供了关键见解,并为靶向治疗干预铺平了道路。为了便于对该数据集进行探索,我们开发了一个在线门户网站(https://sciso.gandallab.org/)。

相似文献

1
Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms.
bioRxiv. 2023 Oct 11:2023.03.25.534016. doi: 10.1101/2023.03.25.534016.
2
Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms.
Science. 2024 May 24;384(6698):eadh7688. doi: 10.1126/science.adh7688.
4
Isoform Age - Splice Isoform Profiling Using Long-Read Technologies.
Front Mol Biosci. 2021 Aug 2;8:711733. doi: 10.3389/fmolb.2021.711733. eCollection 2021.
6
Full-length isoform concatenation sequencing to resolve cancer transcriptome complexity.
BMC Genomics. 2024 Jan 29;25(1):122. doi: 10.1186/s12864-024-10021-x.
7
Single-cell long-read sequencing in human cerebral organoids uncovers cell-type-specific and autism-associated exons.
Cell Rep. 2023 Nov 28;42(11):113335. doi: 10.1016/j.celrep.2023.113335. Epub 2023 Oct 26.
10
Full-length isoform transcriptome of the developing human brain provides further insights into autism.
Cell Rep. 2021 Aug 31;36(9):109631. doi: 10.1016/j.celrep.2021.109631.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验