Azizi Zahra, Ward Andrew T, Lee Donghyun J, Gad Sanchit S, Bhasin Kanchan, Beetel Robert J, Ferreira Tiago, Shankar Sushant, Rumsfeld John S, Harrington Robert A, Virani Salim S, Gluckman Ty J, Dash Rajesh, Rodriguez Fatima
Center for Digital Health, Stanford University, Stanford, California.
Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, California.
Heart Rhythm O2. 2022 Nov 24;4(3):158-168. doi: 10.1016/j.hroo.2022.11.004. eCollection 2023 Mar.
Current risk scores that are solely based on clinical factors have shown modest predictive ability for understanding of factors associated with gaps in real-world prescription of oral anticoagulation (OAC) in patients with atrial fibrillation (AF).
In this study, we sought to identify the role of social and geographic determinants, beyond clinical factors associated with variation in OAC prescriptions using a large national registry of ambulatory patients with AF.
Between January 2017 and June 2018, we identified patients with AF from the American College of Cardiology PINNACLE (Practice Innovation and Clinical Excellence) Registry. We examined associations between patient and site-of-care factors and prescription of OAC across U.S. counties. Several machine learning (ML) methods were used to identify factors associated with OAC prescription.
Among 864,339 patients with AF, 586,560 (68%) were prescribed OAC. County OAC prescription rates ranged from 26.8% to 93%, with higher OAC use in the Western United States. Supervised ML analysis in predicting likelihood of OAC prescriptions and identified a rank order of patient features associated with OAC prescription. In the ML models, in addition to clinical factors, medication use (aspirin, antihypertensives, antiarrhythmic agents, lipid modifying agents), and age, household income, clinic size, and U.S. region were among the most important predictors of an OAC prescription.
In a contemporary, national cohort of patients with AF underuse of OAC remains high, with notable geographic variation. Our results demonstrated the role of several important demographic and socioeconomic factors in underutilization of OAC in patients with AF.
目前仅基于临床因素的风险评分在理解心房颤动(AF)患者口服抗凝药(OAC)实际处方差距相关因素方面显示出适度的预测能力。
在本研究中,我们试图利用一个大型全国性门诊AF患者登记系统,确定社会和地理决定因素在OAC处方差异相关因素(超出临床因素)中的作用。
在2017年1月至2018年6月期间,我们从美国心脏病学会PINNACLE(实践创新与临床卓越)登记系统中识别出AF患者。我们研究了美国各县患者和医疗服务地点因素与OAC处方之间的关联。使用了几种机器学习(ML)方法来识别与OAC处方相关的因素。
在864339例AF患者中,586560例(68%)接受了OAC处方。各县OAC处方率从26.8%到93%不等,美国西部的OAC使用率较高。监督式ML分析用于预测OAC处方的可能性,并确定了与OAC处方相关的患者特征的排名顺序。在ML模型中,除了临床因素外,药物使用(阿司匹林、抗高血压药、抗心律失常药、调脂药)、年龄、家庭收入、诊所规模和美国地区是OAC处方最重要的预测因素。
在当代全国性AF患者队列中,OAC使用不足的情况仍然很严重,存在显著的地理差异。我们的结果证明了几个重要的人口统计学和社会经济因素在AF患者OAC利用不足中的作用。