Ji Tianyi, Liu Xiaoxu, Wang Hui, Shi Yunli, Li Yang, Zhang Man, Li Junqi, Liu Hui, Shen Ze Xiang
Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
Research (Wash D C). 2023;6:0092. doi: 10.34133/research.0092. Epub 2023 Mar 27.
Borrowing from natural mechanisms for material design can lead to functional mimicry and improvement. Inspired by graphite formation, a thermopressure coupling strategy under micropressure (<400 Pa) is applied to prepare carbon anodes. A thermopressure response is discovered based on the cellulose precursor. Here, homologous graphene quantum dot/hard carbon (GQD/HC) heterostructures are synthesized. Under 181.4 Pa and 1,200 °C, the product shows a capacity of 310 mAh g, while the capacity of the direct carbonization product is only 120 mAh g. Prominently, the GQD/HC heterostructure displays marked mechanical strength and flexibility. The experimental and theoretical results illustrate the ion and electron transfer, coordination environment, and electronic states in the GQD/HC heterostructure and elaborate on the origin of the enhanced performance. The thermopressure coupling under micropressure mimics graphite formation, but the heterostructure has better properties than traditional carbon materials. Additionally, micropressure injects new vitality into material research.
借鉴材料设计的自然机制可实现功能模拟与改进。受石墨形成过程的启发,采用微压(<400 Pa)下的热压耦合策略制备碳阳极。基于纤维素前驱体发现了热压响应。在此,合成了同源的石墨烯量子点/硬碳(GQD/HC)异质结构。在181.4 Pa和1200 °C条件下,产物的容量为310 mAh g,而直接碳化产物的容量仅为120 mAh g。显著的是,GQD/HC异质结构表现出显著的机械强度和柔韧性。实验和理论结果阐明了GQD/HC异质结构中的离子和电子转移、配位环境以及电子态,并详细说明了性能增强的起源。微压下的热压耦合模拟了石墨的形成,但该异质结构比传统碳材料具有更好的性能。此外,微压为材料研究注入了新的活力。