Suppr超能文献

光子量子处理器的量子体积。

Quantum Volume for Photonic Quantum Processors.

机构信息

Cisco Quantum Lab, San Jose, California 95134, USA.

Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

Phys Rev Lett. 2023 Mar 17;130(11):110602. doi: 10.1103/PhysRevLett.130.110602.

Abstract

Defining metrics for near-term quantum computing processors has been an integral part of the quantum hardware research and development efforts. Such quantitative characteristics are not only useful for reporting the progress and comparing different quantum platforms but also essential for identifying the bottlenecks and designing a technology road map. Most metrics such as randomized benchmarking and quantum volume were originally introduced for circuit-based quantum computers and were not immediately applicable to measurement-based quantum computing (MBQC) processors such as in photonic devices. In this Letter, we close this long-standing gap by presenting a framework to map physical noises and imperfections in MBQC processes to logical errors in equivalent quantum circuits, whereby enabling the well-known metrics to characterize MBQC. To showcase our framework, we study a continuous-variable cluster state based on the Gottesman-Kitaev-Preskill (GKP) encoding as a near-term candidate for photonic quantum computing, and derive the effective logical gate error channels and calculate the quantum volume in terms of the GKP squeezing and photon transmission rate.

摘要

定义短期量子计算处理器的指标一直是量子硬件研发工作的重要组成部分。这些定量特征不仅有助于报告进展和比较不同的量子平台,而且对于确定瓶颈和设计技术路线图也至关重要。大多数指标,如随机基准测试和量子体积,最初是为基于电路的量子计算机引入的,并不立即适用于基于测量的量子计算(MBQC)处理器,如光子器件。在这封信中,我们通过提出一个将 MBQC 过程中的物理噪声和不完美映射到等效量子电路中的逻辑错误的框架,填补了这一长期存在的差距,从而使众所周知的指标能够描述 MBQC。为了展示我们的框架,我们研究了基于 Gottesman-Kitaev-Preskill(GKP)编码的连续变量聚类态,作为光子量子计算的近期候选方案,并根据 GKP 挤压和光子传输率推导出有效逻辑门错误通道,并计算量子体积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验