Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China.
School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China.
J Colloid Interface Sci. 2023 Jul 15;642:120-128. doi: 10.1016/j.jcis.2023.03.067. Epub 2023 Mar 15.
The exploration of high-performance electrocatalysts for the oxygen evolution reaction (OER) is crucial and urgent for the fast development of green and renewable hydrogen energy. Herein, an ultra-fast and energy-efficient preparation strategy (microwave-assisted rapid in-situ pyrolysis of organometallic compounds induced by carbon nanotube (CNT)) is developed to obtain iron/carbon (Fe/C) heterogeneous materials (Fe/FeC particles wrapped by carbon coating layer). The thickness of the carbon coating layer can be adjusted by changing the content and form of carbon in the metal sources during the fast preparation process. Fe/FeC-A@CNT using iron acetylacetonate as metal sources possesses unique Fe/C heterogeneous, small Fe/FeC particles encapsulated by the thin carbon coating layer (1.77 nm), and obtains the optimal electron penetration effect. The electron penetration effect derives from the redistribution of charge between the surface carbon coating layer and inner Fe/FeC nanoparticles efficiently improving both catalytic activity and stability. Therefore, Fe/FeC-A@CNT shows efficient OER catalytic activity, just needing a low overpotential of 292 mV to reach a current density of 10 mA cm, and long-lasting stability. More importantly, the unique control strategy for carbon thickness in this work provides more opportunity and perspective to prepare robust metal/carbon-based catalytic materials at the nanoscale.
探索用于析氧反应(OER)的高性能电催化剂对于快速发展绿色可再生氢能至关重要且紧迫。在此,开发了一种超快速和节能的制备策略(通过碳纳米管(CNT)诱导的金属有机化合物的微波辅助快速原位热解),以获得铁/碳(Fe/C)异质材料(由碳涂层包裹的 Fe/FeC 颗粒)。通过在快速制备过程中改变金属源中的碳含量和形式,可以调整碳涂层的厚度。以乙酰丙酮铁为金属源的 Fe/FeC-A@CNT 具有独特的 Fe/C 异质结构、由薄碳涂层(1.77nm)包裹的小尺寸 Fe/FeC 颗粒,并获得最佳的电子渗透效果。电子渗透效应源于表面碳涂层和内部 Fe/FeC 纳米颗粒之间电荷的重新分布,从而有效提高了催化活性和稳定性。因此,Fe/FeC-A@CNT 表现出高效的 OER 催化活性,仅需 292mV 的低过电位即可达到 10mA cm 的电流密度,并具有持久的稳定性。更重要的是,本工作中对碳厚度的独特控制策略为制备稳健的纳米级金属/碳基催化材料提供了更多的机会和前景。