Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Bacha Khan University, Charsadda, P.O. Box 24420, KP, Pakistan.
Environ Pollut. 2023 Jun 15;327:121524. doi: 10.1016/j.envpol.2023.121524. Epub 2023 Mar 30.
Metal nanoparticles possess high catalytic activity in various organic transformation reactions. A catalyst must be recovered and re-used effectively and economically to lower the overall reaction cost. The recovery of a catalyst remains a challenge due to their extreme small size. In this research work, catalytic metal nanoparticles were synthesized on Zn-phthalocyanine (ZnPc) and chitosan hydrogel (CH) composite which acts as catalyst support. The ZnPc-CH support facilitate the easy recovery of the loaded metal nanoparticles. Metal nanoparticles (M) based on Cu, Ag, Ni, Co and Fe were decorated inside and on ZnPc-CH hydrogel surface. The developed M@ZnPc-CH were utilized for the enhanced selective reduction of toxins and hydrogen production by methanolysis and hydrolysis of NaBH. Effective catalytic reduction and hydrogen generation was successfully achieved with Co@ZnPc-CH and ZnPc-CH. Under optimized conditions, Co@ZnPc-CH showed complete reduction of 4-nitrophenol (4-NP) in 8.0 min with the fast 4-NP reduction kinetics (K = 0.611 min). Among the developed catalysts, ZnPc-CH showed fast H generation with high H generation rate (HGR = 4100 mLgmin) under optimized conditions. Metal leaching from Co@ZnPc-CH was negligible during recycling of the catalyst, suggesting that it could be implemented to 4-NP treatment from real water samples. Similarly, ZnPc-CH could produce same quantity of H throughout 4 continuous cycles of durability testing without any deactivation and leaching and ZnPc-CH showed high stability, indicating the effectiveness of the catalyst to be applied for H production on large scale.
金属纳米粒子在各种有机转化反应中具有高催化活性。为了降低整体反应成本,必须有效地和经济地回收和再利用催化剂。由于其极小的尺寸,催化剂的回收仍然是一个挑战。在这项研究工作中,催化金属纳米粒子被合成在 Zn-酞菁(ZnPc)和壳聚糖水凝胶(CH)复合材料上,该复合材料作为催化剂载体。ZnPc-CH 载体有利于负载金属纳米粒子的容易回收。基于 Cu、Ag、Ni、Co 和 Fe 的金属纳米粒子(M)被修饰在 ZnPc-CH 水凝胶内部和表面上。开发的 M@ZnPc-CH 被用于增强通过甲醇解和 NaBH 水解对毒素的选择性还原和氢气生成。Co@ZnPc-CH 和 ZnPc-CH 成功地实现了有效的催化还原和氢气生成。在优化条件下,Co@ZnPc-CH 显示出在 8.0 分钟内完全还原 4-硝基苯酚(4-NP),具有快速的 4-NP 还原动力学(K=0.611 min)。在所开发的催化剂中,ZnPc-CH 在优化条件下显示出快速的 H 生成和高的 H 生成速率(HGR=4100 mLgmin)。在催化剂的循环回收过程中,Co@ZnPc-CH 中的金属浸出可以忽略不计,这表明它可以用于从实际水样中处理 4-NP。同样,ZnPc-CH 可以在 4 个连续的耐久性测试循环中产生相同数量的 H,而没有任何失活和浸出,ZnPc-CH 表现出高稳定性,表明该催化剂在大规模生产 H 方面的有效性。