Suppr超能文献

加权图的更快割稀疏化

Faster Cut Sparsification of Weighted Graphs.

作者信息

Forster Sebastian, de Vos Tijn

机构信息

Department of Computer Science, University of Salzburg, Salzburg, Austria.

出版信息

Algorithmica. 2023;85(4):929-964. doi: 10.1007/s00453-022-01053-4. Epub 2022 Nov 1.

Abstract

A cut sparsifier is a reweighted subgraph that maintains the weights of the cuts of the original graph up to a multiplicative factor of . This paper considers computing cut sparsifiers of weighted graphs of size . Our algorithm computes such a sparsifier in time , both for graphs with polynomially bounded and unbounded integer weights, where is the functional inverse of Ackermann's function. This improves upon the state of the art by Benczúr and Karger (SICOMP, 2015), which takes time. For unbounded weights, this directly gives the best known result for cut sparsification. Together with preprocessing by an algorithm of Fung et al. (SICOMP, 2019), this also gives the best known result for polynomially-weighted graphs. Consequently, this implies the fastest approximate min-cut algorithm, both for graphs with polynomial and unbounded weights. In particular, we show that it is possible to adapt the state of the art algorithm of Fung et al. for unweighted graphs to weighted graphs, by letting the partial maximum spanning forest (MSF) packing take the place of the Nagamochi-Ibaraki forest packing. MSF packings have previously been used by Abraham et al. (FOCS, 2016) in the dynamic setting, and are defined as follows: an -partial MSF packing of is a set , where is a maximum spanning forest in . Our method for computing (a sufficient estimation of) the MSF packing is the bottleneck in the running time of our sparsification algorithm.

摘要

割稀疏化器是一种重新加权的子图,它能将原始图的割的权重保持在一个乘性因子 以内。本文考虑计算规模为 的加权图的割稀疏化器。我们的算法在时间 内计算出这样一个稀疏化器,对于具有多项式有界整数权重和无界整数权重的图均适用,其中 是阿克曼函数的函数逆。这改进了本茨尔和卡格尔(《计算理论学报》,2015年)的现有技术水平,他们的算法需要 时间。对于无界权重,这直接给出了割稀疏化的已知最佳结果。结合冯等人(《计算理论学报》,2019年)的算法进行预处理,这也给出了多项式加权图的已知最佳结果。因此,这意味着对于具有多项式权重和无界权重的图,它是最快的近似最小割算法。特别地,我们表明可以通过让部分最大生成森林(MSF)打包代替长谷持-茨木森林打包,将冯等人针对无权图的现有技术算法适用于加权图。MSF打包先前已被亚伯拉罕等人(《计算机科学基础会议》,2016年)用于动态设置中,其定义如下: 的一个 -部分MSF打包是一个集合 ,其中 是 中的一个最大生成森林。我们计算(MSF打包的一个充分估计)的方法是我们稀疏化算法运行时间的瓶颈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77e5/10060318/acc573695598/453_2022_1053_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验