Suppr超能文献

长江源区锂同位素的高时间分辨率:高海拔流域风化作用的水文控制。

High-temporal-resolution of lithium isotopes in Yangtze River headwater: Hydrological control on weathering in high-relief catchments.

机构信息

Institute of Surface-Earth System Sciences, School of Earth System Science, Tianjin University, Tianjin 300072, China.

Institute of Geological Sciences, Freie Universitat Berlin, Malteser Straße 74-100, 12249 Berlin, Germany; State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai, China.

出版信息

Sci Total Environ. 2023 Jun 25;879:163214. doi: 10.1016/j.scitotenv.2023.163214. Epub 2023 Apr 1.

Abstract

How climate change regulates silicate weathering in tectonically active areas remains clear. To evaluate the roles of temperature and hydrology in continental-scale silicate weathering in high-relief catchments, we applied a high temporal resolution of lithium isotopes in the Yalong River, which drains the high-relief borders of the eastern Tibetan Plateau. The dissolved δLi values range from +12.2‰ to +13.7‰ in the non-monsoon season and are higher and significantly vary from +13.5‰ to +19.4‰ in the monsoon season. The negative correlation between dissolved δLi and the Li/Na ratio is attributed to the formation of various proportions of δLi-low secondary minerals during weathering. From non-monsoon to monsoon season, the weathering intensity decreases with increasing secondary minerals formation and the weathering transforms from a supply limited to a kinetically limited weathering regime, indicated by a negative correlation between dissolved δLi value and SWR/D ratio (SWR = silicate weathering rate and D = total denudation rate). No correlations between temperature and dissolved δLi values were observed, and SWR suggested that temperature is not the direct control factor of silicate weathering in high-relief areas. The dissolved δLi values display positive correlations with discharge, physical erosion rates (PERs), and SWR. This positive correlations was attributed to an increase in the PER which caused the formation of more secondary minerals with increasing discharge. These results indicate the rapid temporal variability of riverine Li isotopes and chemical weathering process in response to changes in hydrology rather than temperature. Combined with the compiled PER, SWR, and Li isotopes at various altitudes, we further suggest that weathering in high-altitude catchments is more sensitive to hydrological changes than weathering in low-altitude catchments. These results highlight the key role of the hydrologic cycle (runoff and discharge) and the geomorphic regime in controlling global silicate weathering.

摘要

在构造活跃地区,气候变化如何调节硅酸盐风化仍不清楚。为了评估温度和水文学在高海拔流域大陆尺度硅酸盐风化中的作用,我们应用了雅砻江高时间分辨率的锂同位素,该流域位于青藏高原东部的高海拔边界。非季风季节溶解的 δLi 值范围为 +12.2‰ 至 +13.7‰,季风季节则更高且显著变化为 +13.5‰ 至 +19.4‰。溶解的 δLi 与 Li/Na 比值之间的负相关关系归因于风化过程中形成的各种比例的 δLi 低值次生矿物。从非季风季节到季风季节,风化强度随着次生矿物形成的增加而降低,风化从供应有限转变为动力学有限的风化状态,这表现为溶解的 δLi 值与 SWR/D 比值(SWR = 硅酸盐风化率,D = 总剥蚀率)之间呈负相关。未观察到温度与溶解的 δLi 值之间的相关性,且 SWR 表明温度不是高海拔地区硅酸盐风化的直接控制因素。溶解的 δLi 值与流量、物理侵蚀率 (PER) 和 SWR 呈正相关。这种正相关关系归因于 PER 的增加,导致随着流量的增加形成更多的次生矿物。这些结果表明,河流锂同位素和化学风化过程的快速时间变化是对水文变化的响应,而不是温度。结合我们编译的不同海拔高度的 PER、SWR 和锂同位素,我们进一步表明,高海拔流域的风化对水文变化比低海拔流域的风化更为敏感。这些结果强调了水文循环(径流量和流量)和地貌格局在控制全球硅酸盐风化方面的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验