Department of Bioengineering, University of Washington, Seattle, WA, USA.
Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
J Physiol. 2023 Jul;601(13):2733-2749. doi: 10.1113/JP284244. Epub 2023 Apr 25.
After myocardial infarction (MI), a significant portion of heart muscle is replaced with scar tissue, progressively leading to heart failure. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) offer a promising option for improving cardiac function after MI. However, hPSC-CM transplantation can lead to engraftment arrhythmia (EA). EA is a transient phenomenon arising shortly after transplantation then spontaneously resolving after a few weeks. The underlying mechanism of EA is unknown. We hypothesize that EA may be explained partially by time-varying, spatially heterogeneous, graft-host electrical coupling. Here, we created computational slice models derived from histological images that reflect different configuration of grafts in the infarcted ventricle. We ran simulations with varying degrees of connection imposed upon the graft-host perimeter to assess how heterogeneous electrical coupling affected EA with non-conductive scar, slow-conducting scar and scar replaced by host myocardium. We also quantified the effect of variation in intrinsic graft conductivity. Susceptibility to EA initially increased and subsequently decreased with increasing graft-host coupling, suggesting the waxing and waning of EA is regulated by progressive increases in graft-host coupling. Different spatial distributions of graft, host and scar yielded markedly different susceptibility curves. Computationally replacing non-conductive scar with host myocardium or slow-conducting scar, and increasing intrinsic graft conductivity both demonstrated potential means to blunt EA vulnerability. These data show how graft location, especially relative to scar, along with its dynamic electrical coupling to host, can influence EA burden; moreover, they offer a rational base for further studies aimed to define the optimal delivery of hPSC-CM injection. KEY POINTS: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) hold great cardiac regenerative potential but can also cause engraftment arrhythmias (EA). Spatiotemporal evolution in the pattern of electrical coupling between injected hPSC-CMs and surrounding host myocardium may explain the dynamics of EA observed in large animal models. We conducted simulations in histology-derived 2D slice computational models to assess the effects of heterogeneous graft-host electrical coupling on EA propensity, with or without scar tissue. Our findings suggest spatiotemporally heterogeneous graft-host coupling can create an electrophysiological milieu that favours graft-initiated host excitation, a surrogate metric of EA susceptibility. Removing scar from our models reduced but did not abolish the propensity for this phenomenon. Conversely, reduced intra-graft electrical connectedness increased the incidence of graft-initiated host excitation. The computational framework created for this study can be used to generate new hypotheses, targeted delivery of hPSC-CMs.
心肌梗死后(MI),大量心肌被瘢痕组织取代,逐渐导致心力衰竭。人类多能干细胞衍生的心肌细胞(hPSC-CM)为改善 MI 后心功能提供了一种很有前途的选择。然而,hPSC-CM 移植可导致植入性心律失常(EA)。EA 是移植后不久出现的短暂现象,数周后自发消退。EA 的潜在机制尚不清楚。我们假设 EA 部分可以通过时间变化的、空间异质的、移植物-宿主电偶联来解释。在这里,我们创建了源自组织学图像的计算切片模型,这些模型反映了梗死心室中移植物的不同构型。我们通过对移植物-宿主周界施加不同程度的连接来运行模拟,以评估异质电偶联如何影响无导电瘢痕、慢传导瘢痕和被宿主心肌替代的瘢痕中的 EA。我们还量化了移植物固有导电性变化的影响。随着移植物-宿主耦合的增加,EA 的易感性最初增加,随后降低,这表明 EA 的消长受到移植物-宿主耦合的逐渐增加的调节。移植物、宿主和瘢痕的不同空间分布产生了明显不同的易感性曲线。用宿主心肌或慢传导瘢痕替代无导电瘢痕,以及增加移植物固有导电性,均显示出减弱 EA 易感性的潜在手段。这些数据表明移植物的位置,特别是相对于瘢痕的位置,以及与宿主的动态电偶联,如何影响 EA 负担;此外,它们为进一步研究定义 hPSC-CM 注射的最佳递送提供了合理的基础。要点:人类多能干细胞衍生的心肌细胞(hPSC-CM)具有很大的心脏再生潜力,但也会引起植入性心律失常(EA)。注入的 hPSC-CM 与周围宿主心肌之间电偶联模式的时空演变可能解释了在大动物模型中观察到的 EA 动态。我们在组织学衍生的 2D 切片计算模型中进行了模拟,以评估不均匀的移植物-宿主电偶联对 EA 倾向的影响,有无瘢痕组织。我们的研究结果表明,时空不均匀的移植物-宿主偶联可以产生有利于移植物引发宿主兴奋的电生理环境,这是 EA 易感性的替代指标。从我们的模型中去除瘢痕组织减少了但没有消除这种现象的发生。相反,降低移植物内的电连接性会增加移植物引发的宿主兴奋的发生率。本研究创建的计算框架可用于产生新的假设,有针对性地递送 hPSC-CM。