Suppr超能文献

比较用于预测土地开发强度的机器学习方法。

Comparing machine learning methods for predicting land development intensity.

机构信息

School of Natural Resources and Surveying and Mapping, Nanning Normal University, Nanjing, China.

出版信息

PLoS One. 2023 Apr 5;18(4):e0282476. doi: 10.1371/journal.pone.0282476. eCollection 2023.

Abstract

Land development intensity is a comprehensive indicator to measure the degree of saving and intensive land construction and economic production activities. It is also the result of the joint action of natural, social, economic, and ecological elements in land development and utilization. Scientific prediction of land development intensity has particular reference significance for future regional development planning and the formulation of reasonable land use policies. Based on the inter-provincial land development intensity and its influencing factors in China, this study applied four algorithms, XGBoost, random forest model, support vector machine, and decision tree, to simulate and predict the land development intensity, and then compared the prediction accuracy of the four algorithms, and also carried out hyperparameter adjustment and prediction accuracy verification. The results show that the model with the best prediction performance among the four algorithms is XGBoost, and its R2 and MSE between predicted and valid values are 95.66% and 0.16, respectively, which are higher than the other three models. During the training process, the learning curve of the XGBoost model exhibited low fluctuation and fast fitting. Hyperparameter tuning is crucial to exploit the model's potential. The XGBoost model has the best prediction performance with the best hyperparameter combination of max_depth:19, learning_rate: 0.47, and n_estimatiors:84. This study provides some reference significance for the simulation of land development and utilization dynamics.

摘要

土地开发强度是衡量节约集约用地水平和经济生产活动强度的综合指标,也是土地开发利用过程中自然、社会、经济和生态要素共同作用的结果。科学预测土地开发强度对未来区域发展规划和合理土地利用政策的制定具有特殊的参考意义。本研究基于中国省际土地开发强度及其影响因素,应用 XGBoost、随机森林模型、支持向量机和决策树四种算法对土地开发强度进行模拟和预测,并比较了四种算法的预测精度,同时进行了超参数调整和预测精度验证。结果表明,四种算法中预测性能最好的模型是 XGBoost,其预测值与真实值之间的 R2 和 MSE 分别为 95.66%和 0.16,均高于其他三个模型。在训练过程中,XGBoost 模型的学习曲线波动较小,拟合速度较快。超参数调整对于挖掘模型潜力至关重要。XGBoost 模型在最佳超参数组合 max_depth:19、learning_rate:0.47 和 n_estimators:84 下具有最佳的预测性能。本研究为土地开发利用动态模拟提供了一定的参考意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3467/10075418/89a2433092d2/pone.0282476.g001.jpg

相似文献

1
Comparing machine learning methods for predicting land development intensity.
PLoS One. 2023 Apr 5;18(4):e0282476. doi: 10.1371/journal.pone.0282476. eCollection 2023.
2
A 5-year survival status prognosis of nonmetastatic cervical cancer patients through machine learning algorithms.
Cancer Med. 2023 Mar;12(6):6867-6876. doi: 10.1002/cam4.5477. Epub 2022 Dec 8.
3
Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
Comput Intell Neurosci. 2023 Mar 14;2023:9266889. doi: 10.1155/2023/9266889. eCollection 2023.
4
Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor.
Comput Methods Programs Biomed. 2020 Nov;196:105624. doi: 10.1016/j.cmpb.2020.105624. Epub 2020 Jun 25.
6
Optimization of Sample Construction Based on NDVI for Cultivated Land Quality Prediction.
Int J Environ Res Public Health. 2022 Jun 24;19(13):7781. doi: 10.3390/ijerph19137781.
8
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
Med Phys. 2018 Jul;45(7):3449-3459. doi: 10.1002/mp.12967. Epub 2018 Jun 13.
10
[Construction and Analysis of Machine Learning Based Transportation Carbon Emission Prediction Model].
Huan Jing Ke Xue. 2024 Jun 8;45(6):3421-3432. doi: 10.13227/j.hjkx.202305234.

本文引用的文献

1
Deriving High-Resolution Emission Inventory of Open Biomass Burning in China based on Satellite Observations.
Environ Sci Technol. 2016 Nov 1;50(21):11779-11786. doi: 10.1021/acs.est.6b02705. Epub 2016 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验