Suppr超能文献

LSOTB-TIR:一个大规模高多样性热红外单目标跟踪基准。

LSOTB-TIR: A Large-Scale High-Diversity Thermal Infrared Single Object Tracking Benchmark.

作者信息

Liu Qiao, Li Xin, Yuan Di, Yang Chao, Chang Xiaojun, He Zhenyu

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9844-9857. doi: 10.1109/TNNLS.2023.3236895. Epub 2024 Jul 8.

Abstract

Unlike visual object tracking, thermal infrared (TIR) object tracking methods can track the target of interest in poor visibility such as rain, snow, and fog, or even in total darkness. This feature brings a wide range of application prospects for TIR object-tracking methods. However, this field lacks a unified and large-scale training and evaluation benchmark, which has severely hindered its development. To this end, we present a large-scale and high-diversity unified TIR single object tracking benchmark, called LSOTB-TIR, which consists of a tracking evaluation dataset and a general training dataset with a total of 1416 TIR sequences and more than 643 K frames. We annotate the bounding box of objects in every frame of all sequences and generate over 770 K bounding boxes in total. To the best of our knowledge, LSOTB-TIR is the largest and most diverse TIR object tracking benchmark to date. We spilt the evaluation dataset into a short-term tracking subset and a long-term tracking subset to evaluate trackers using different paradigms. What's more, to evaluate a tracker on different attributes, we also define four scenario attributes and 12 challenge attributes in the short-term tracking evaluation subset. By releasing LSOTB-TIR, we encourage the community to develop deep learning-based TIR trackers and evaluate them fairly and comprehensively. We evaluate and analyze 40 trackers on LSOTB-TIR to provide a series of baselines and give some insights and future research directions in TIR object tracking. Furthermore, we retrain several representative deep trackers on LSOTB-TIR, and their results demonstrate that the proposed training dataset significantly improves the performance of deep TIR trackers. Codes and dataset are available at https://github.com/QiaoLiuHit/LSOTB-TIR.

摘要

与视觉目标跟踪不同,热红外(TIR)目标跟踪方法能够在如雨、雪、雾等能见度不佳的情况下,甚至在完全黑暗的环境中跟踪感兴趣的目标。这一特性为TIR目标跟踪方法带来了广泛的应用前景。然而,该领域缺乏一个统一的大规模训练和评估基准,这严重阻碍了其发展。为此,我们提出了一个大规模、高多样性的统一TIR单目标跟踪基准,称为LSOTB-TIR,它由一个跟踪评估数据集和一个通用训练数据集组成,共有1416个TIR序列和超过64.3万个帧。我们对所有序列的每一帧中的目标边界框进行标注,总共生成了超过77万个边界框。据我们所知,LSOTB-TIR是迄今为止最大、最多样化的TIR目标跟踪基准。我们将评估数据集分为短期跟踪子集和长期跟踪子集,以使用不同范式评估跟踪器。此外,为了在不同属性上评估跟踪器,我们还在短期跟踪评估子集中定义了四个场景属性和12个挑战属性。通过发布LSOTB-TIR,我们鼓励社区开发基于深度学习的TIR跟踪器,并对其进行公平、全面的评估。我们在LSOTB-TIR上评估和分析了40个跟踪器,以提供一系列基线,并给出TIR目标跟踪的一些见解和未来研究方向。此外,我们在LSOTB-TIR上对几个有代表性的深度跟踪器进行了重新训练,它们的结果表明,所提出的训练数据集显著提高了深度TIR跟踪器的性能。代码和数据集可在https://github.com/QiaoLiuHit/LSOTB-TIR获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验