Suppr超能文献

Optimized Adaptive Fuzzy Security Control of Nonlinear Systems With Prescribed Tracking Performance.

作者信息

Zhang Lili, Che Wei-Wei, Deng Chao, Wu Zheng-Guang

出版信息

IEEE Trans Cybern. 2023 Dec;53(12):7868-7880. doi: 10.1109/TCYB.2023.3234295. Epub 2023 Nov 29.

Abstract

This article studies the optimized fuzzy prescribed performance control problem for nonlinear nonstrict-feedback systems under denial-of-service (DoS) attacks. A fuzzy estimator is delicately designed to model the immeasurable system states in the presence of DoS attacks. To achieve the preset tracking performance, a simper prescribed performance error transformation is constructed considering the characteristics of DoS attacks, which helps obtain a novel Hamilton-Jacobi-Bellman equation to derive the optimized prescribed performance controller. Furthermore, the fuzzy-logic system, combined with the reinforcement learning (RL) technique, is employed to approximate the unknown nonlinearity existing in the prescribed performance controller design process. An optimized adaptive fuzzy security control law is then proposed for the considered nonlinear nonstrict-feedback systems subject to DoS attacks. Through the Lyapunov stability analysis, the tracking error is proved to approach the predefined region by the preset finite time, even in the presence of DoS attacks. Meanwhile, the consumed control resources are minimized due to the RL-based optimized algorithm. Finally, an actual example with comparisons verifies the effectiveness of the proposed control algorithm.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验