IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9411-9425. doi: 10.1109/TPAMI.2023.3243059. Epub 2023 Jun 30.
We present compact and effective deep convolutional neural networks (CNNs) by exploring properties of videos for video deblurring. Motivated by the non-uniform blur property that not all the pixels of the frames are blurry, we develop a CNN to integrate a temporal sharpness prior (TSP) for removing blur in videos. The TSP exploits sharp pixels from adjacent frames to facilitate the CNN for better frame restoration. Observing that the motion field is related to latent frames instead of blurry ones in the image formation model, we develop an effective cascaded training approach to solve the proposed CNN in an end-to-end manner. As videos usually contain similar contents within and across frames, we propose a non-local similarity mining approach based on a self-attention method with the propagation of global features to constrain CNNs for frame restoration. We show that exploring the domain knowledge of videos can make CNNs more compact and efficient, where the CNN with the non-local spatial-temporal similarity is 3× smaller than the state-of-the-art methods in terms of model parameters while its performance gains are at least 1 dB higher in terms of PSNRs. Extensive experimental results show that our method performs favorably against state-of-the-art approaches on benchmarks and real-world videos.
我们提出了紧凑而有效的深度卷积神经网络(CNNs),通过探索视频的特性来进行视频去模糊。受帧中并非所有像素都模糊的非均匀模糊特性的启发,我们开发了一个 CNN 来集成时间锐化先验(TSP),以去除视频中的模糊。TSP 利用来自相邻帧的清晰像素来帮助 CNN 更好地恢复帧。观察到运动场与潜在帧而不是图像形成模型中的模糊帧相关,我们开发了一种有效的级联训练方法,以端到端的方式解决所提出的 CNN。由于视频通常在帧内和帧间包含相似的内容,我们提出了一种基于自注意力方法的非局部相似性挖掘方法,通过传播全局特征来约束 CNN 进行帧恢复。我们表明,探索视频的领域知识可以使 CNN 更加紧凑和高效,我们的具有非局部时空相似性的 CNN 在模型参数方面比最先进的方法小 3 倍,而在 PSNR 方面的性能增益至少高 1 dB。广泛的实验结果表明,我们的方法在基准测试和真实视频上优于最先进的方法。