Suppr超能文献

鹅去氧胆酸可挽救 5 型痉挛性截瘫和脑腱黄瘤病诱导多能干细胞源性神经元的轴突变性。

Chenodeoxycholic acid rescues axonal degeneration in induced pluripotent stem cell-derived neurons from spastic paraplegia type 5 and cerebrotendinous xanthomatosis patients.

机构信息

Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA.

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.

出版信息

Orphanet J Rare Dis. 2023 Apr 6;18(1):72. doi: 10.1186/s13023-023-02666-w.

Abstract

BACKGROUND

Biallelic mutations in CYP27A1 and CYP7B1, two critical genes regulating cholesterol and bile acid metabolism, cause cerebrotendinous xanthomatosis (CTX) and hereditary spastic paraplegia type 5 (SPG5), respectively. These rare diseases are characterized by progressive degeneration of corticospinal motor neuron axons, yet the underlying pathogenic mechanisms and strategies to mitigate axonal degeneration remain elusive.

METHODS

To generate induced pluripotent stem cell (iPSC)-based models for CTX and SPG5, we reprogrammed patient skin fibroblasts into iPSCs by transducing fibroblast cells with episomal vectors containing pluripotency factors. These patient-specific iPSCs, as well as control iPSCs, were differentiated into cortical projection neurons (PNs) and examined for biochemical alterations and disease-related phenotypes.

RESULTS

CTX and SPG5 patient iPSC-derived cortical PNs recapitulated several disease-specific biochemical changes and axonal defects of both diseases. Notably, the bile acid chenodeoxycholic acid (CDCA) effectively mitigated the biochemical alterations and rescued axonal degeneration in patient iPSC-derived neurons. To further examine underlying disease mechanisms, we developed CYP7B1 knockout human embryonic stem cell (hESC) lines using CRISPR-cas9-mediated gene editing and, following differentiation, examined hESC-derived cortical PNs. Knockout of CYP7B1 resulted in similar axonal vesiculation and degeneration in human cortical PN axons, confirming a cause-effect relationship between gene deficiency and axonal degeneration. Interestingly, CYP7B1 deficiency led to impaired neurofilament expression and organization as well as axonal degeneration, which could be rescued with CDCA, establishing a new disease mechanism and therapeutic target to mitigate axonal degeneration.

CONCLUSIONS

Our data demonstrate disease-specific lipid disturbances and axonopathy mechanisms in human pluripotent stem cell-based neuronal models of CTX and SPG5 and identify CDCA, an established treatment of CTX, as a potential pharmacotherapy for SPG5. We propose this novel treatment strategy to rescue axonal degeneration in SPG5, a currently incurable condition.

摘要

背景

调控胆固醇和胆汁酸代谢的两个关键基因 CYP27A1 和 CYP7B1 的双等位基因突变分别导致脑腱黄瘤病(CTX)和遗传性痉挛性截瘫 5 型(SPG5)。这些罕见疾病的特征是皮质脊髓运动神经元轴突进行性退化,但潜在的致病机制和减轻轴突退化的策略仍不清楚。

方法

为了建立 CTX 和 SPG5 的诱导多能干细胞(iPSC)模型,我们通过转导含有多能性因子的附加体载体将患者皮肤成纤维细胞重编程为 iPSC。这些患者特异性 iPSC 以及对照 iPSC 被分化为皮质投射神经元(PN),并对其生化改变和与疾病相关的表型进行了检测。

结果

CTX 和 SPG5 患者的 iPSC 衍生的皮质 PN 重现了两种疾病的几种特定的生化改变和轴突缺陷。值得注意的是,胆汁酸鹅脱氧胆酸(CDCA)可有效减轻患者 iPSC 衍生神经元的生化改变并挽救轴突退化。为了进一步研究潜在的疾病机制,我们使用 CRISPR-cas9 介导的基因编辑技术建立了 CYP7B1 敲除的人类胚胎干细胞(hESC)系,并在分化后检测了 hESC 衍生的皮质 PN。CYP7B1 的敲除导致人类皮质 PN 轴突中类似的囊泡化和退化,证实了基因缺失与轴突退化之间的因果关系。有趣的是,CYP7B1 缺乏导致神经丝表达和组织受损以及轴突退化,而 CDCA 可挽救这一现象,这为减轻轴突退化建立了一种新的疾病机制和治疗靶点。

结论

我们的数据表明,CTX 和 SPG5 的人类多能干细胞源性神经元模型中存在特定于疾病的脂质紊乱和轴突病变机制,并确定 CDCA(CTX 的一种既定治疗方法)为 SPG5 的潜在药物治疗方法。我们提出了这种新的治疗策略来挽救 SPG5 的轴突退化,这是一种目前无法治愈的疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/041b/10080795/0aefcc411cc9/13023_2023_2666_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验