Suppr超能文献

分层球形 MOF 衍生的 MnO@C 作为高性能水系锌离子电池的正极材料。

Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries.

机构信息

School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.

School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China; Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, Anhui 241003, PR China.

出版信息

J Colloid Interface Sci. 2023 Jul 15;642:513-522. doi: 10.1016/j.jcis.2023.03.186. Epub 2023 Apr 2.

Abstract

Aqueous zinc-ion batteries (AZIBs) have shown great potential as energy storage devices owing to their high energy density, low cost, and low toxicity. Typically, high performance AZIBs incorporate manganese-based cathode materials. Despite their advantages, these cathodes are limited by significant capacity fading and poor rate performance due to the dissolution and disproportionation of manganese. Herein, hierarchical spheroidal MnO@C structures were synthesized from Mn-based metal-organic frameworks, which benefit from a protective carbon layer to prevent manganese dissolution. The spheroidal MnO@C structures were incorporated onto a heterogeneous interface to act as a cathode material for AZIBs, which exhibited excellent cycling stability (160 mAh g after 1000 cycles at 3.0 A g), good rate capability (165.9 mAh g at 3.0 A g), and appreciable specific capacity (412.4 mAh g at 0.1 A g) for AZIBs. Moreover, the Zn storage mechanism in MnO@C was comprehensively investigated using ex-situ XRD and XPS studies. These results demonstrate that hierarchical spheroidal MnO@C is a potential cathode material for high-performing AZIBs.

摘要

水系锌离子电池(AZIBs)由于其高能量密度、低成本和低毒性,作为储能装置显示出巨大的潜力。通常,高性能 AZIBs 采用基于锰的阴极材料。尽管这些阴极具有优势,但由于锰的溶解和歧化,它们的容量衰减和倍率性能较差。在此,通过 Mn 基金属有机框架合成了具有分级球形 MnO@C 结构,得益于保护性碳层来防止锰溶解。将球形 MnO@C 结构结合到非均相界面上,作为 AZIBs 的阴极材料,表现出优异的循环稳定性(在 3.0 A g 下 1000 次循环后为 160 mAh g)、良好的倍率性能(在 3.0 A g 下为 165.9 mAh g)和可观的比容量(在 0.1 A g 下为 412.4 mAh g)。此外,通过原位 XRD 和 XPS 研究综合研究了 MnO@C 中的 Zn 存储机制。这些结果表明,分级球形 MnO@C 是高性能 AZIBs 的潜在阴极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验