Suppr超能文献

SDV-LOAM:半直接视觉激光雷达里程计与建图

SDV-LOAM: Semi-Direct Visual-LiDAR Odometry and Mapping.

作者信息

Yuan Zikang, Wang Qingjie, Cheng Ken, Hao Tianyu, Yang Xin

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):11203-11220. doi: 10.1109/TPAMI.2023.3262817. Epub 2023 Aug 7.

Abstract

Visual-LiDAR odometry and mapping (V-LOAM), which fuses complementary information of a camera and a LiDAR, is an attractive solution for accurate and robust pose estimation and mapping. However, existing systems could suffer nontrivial tracking errors arising from 1) association between 3D LiDAR points and sparse 2D features (i.e., 3D-2D depth association) and 2) obvious drifts in the vertical direction in the 6-degree of freedom (DOF) sweep-to-map optimization. In this paper, we present SDV-LOAM which incorporates a semi-direct visual odometry and an adaptive sweep-to-map LiDAR odometry to effectively avoid the above-mentioned errors and in turn achieve high tracking accuracy. The visual module of our SDV-LOAM directly extracts high-gradient pixels where 3D LiDAR points project on for tracking. To avoid the problem of large scale difference between matching frames in the VO, we design a novel point matching with propagation method to propagate points of a host frame to an intermediate keyframe which is closer to the current frame to reduce scale differences. To reduce the pose estimation drifts in the vertical direction, our LiDAR module employs an adaptive sweep-to-map optimization method which automatically choose to optimize 3 horizontal DOF or 6 full DOF pose according to the richness of geometric constraints in the vertical direction. In addition, we propose a novel sweep reconstruction method which can increase the input frequency of LiDAR point clouds to the same frequency as the camera images, and in turn yield a high frequency output of the LiDAR odometry in theory. Experimental results demonstrate that our SDV-LOAM ranks 8th on the KITTI odometry benchmark which outperforms most LiDAR/visual-LiDAR odometry systems. In addition, our visual module outperforms state-of-the-art visual odometry and our adaptive sweep-to-map optimization can improve the performance of several existing open-sourced LiDAR odometry systems. Moreover, we demonstrate our SDV-LOAM on a custom-built hardware platform in large-scale environments which achieves both a high accuracy and output frequency. We have released the source code of our SDV-LOAM for the development of the community.

摘要

视觉激光里程计与建图(V-LOAM)融合了相机和激光雷达的互补信息,是一种用于精确且稳健的位姿估计与建图的有吸引力的解决方案。然而,现有系统可能会因以下问题而出现显著的跟踪误差:1)3D激光雷达点与稀疏2D特征之间的关联(即3D-2D深度关联),以及2)在6自由度(DOF)扫描到地图优化中垂直方向上明显的漂移。在本文中,我们提出了SDV-LOAM,它结合了半直接视觉里程计和自适应扫描到地图激光雷达里程计,以有效避免上述误差,进而实现高跟踪精度。我们的SDV-LOAM的视觉模块直接提取3D激光雷达点投影到其上的高梯度像素进行跟踪。为了避免视觉里程计中匹配帧之间尺度差异过大的问题,我们设计了一种新颖的带传播的点匹配方法,将主帧的点传播到更接近当前帧的中间关键帧,以减小尺度差异。为了减少垂直方向上的位姿估计漂移,我们的激光雷达模块采用了一种自适应扫描到地图优化方法,该方法根据垂直方向上几何约束的丰富程度自动选择优化3个水平自由度或6个全自由度位姿。此外,我们提出了一种新颖的扫描重建方法,该方法可以将激光雷达点云的输入频率提高到与相机图像相同的频率,进而在理论上产生高频的激光雷达里程计输出。实验结果表明,我们的SDV-LOAM在KITTI里程计基准测试中排名第8,优于大多数激光雷达/视觉激光雷达里程计系统。此外,我们的视觉模块优于现有最先进的视觉里程计,并且我们的自适应扫描到地图优化可以提高几个现有开源激光雷达里程计系统的性能。此外,我们在大规模环境中的定制硬件平台上展示了我们的SDV-LOAM,它实现了高精度和输出频率。我们已经发布了SDV-LOAM的源代码以供社区开发使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验