Suppr超能文献

基于正例无标签学习和多重符号聚合近似的自动抄表智能系统中的异常检测。

Anomaly Detection in Automatic Meter Intelligence System Using Positive Unlabeled Learning and Multiple Symbolic Aggregate Approximation.

机构信息

Applied Mathematics Department, School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Hanoi, Vietnam.

Big Data Lab, CMC Institute of Science and Technology, Hanoi, Vietnam.

出版信息

Big Data. 2023 Jun;11(3):225-238. doi: 10.1089/big.2021.0471. Epub 2023 Apr 10.

Abstract

With the development of automatic electrical devices in smart grids, the data generated by time and transmitted are vast and thus impossible to control consumption by humans. The problem of abnormal detection in power consumption is crucial in monitoring and controlling smart grids. This article proposes the detection of electrical meter anomalies by detecting abnormal patterns and learning unlabeled data. Furthermore, a framework for big data and machine learning-based anomaly detection framework are introduced. The experimental results show that the time series anomaly detection for electric meters has better results in accuracy and time than the expert alternatives.

摘要

随着智能电网中自动化电气设备的发展,所产生的数据随时间推移而大量传输,人类几乎不可能对此加以控制。因此,对电力消耗异常情况的检测是监控智能电网的关键。本文通过检测异常模式和学习无标签数据来提出电表异常检测问题。此外,还引入了一个基于大数据和机器学习的异常检测框架。实验结果表明,与专家替代方案相比,该电表时间序列异常检测在准确性和时间方面具有更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验