Suppr超能文献

一种有效且高效的人体运动捕捉数据三维恢复方法。

An Effective and Efficient Approach for 3D Recovery of Human Motion Capture Data.

机构信息

Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan.

Faculty of Information, Media and Electrical Engineering, Institute of Media and Imaging Technology, TH Köln-University of Applied Sciences, 50679 Köln, Germany.

出版信息

Sensors (Basel). 2023 Mar 31;23(7):3664. doi: 10.3390/s23073664.

Abstract

In this work, we propose a novel data-driven approach to recover missing or corrupted motion capture data, either in the form of 3D skeleton joints or 3D marker trajectories. We construct a knowledge-base that contains prior existing knowledge, which helps us to make it possible to infer missing or corrupted information of the motion capture data. We then build a d-tree in parallel fashion on the GPU for fast search and retrieval of this already available knowledge in the form of nearest neighbors from the knowledge-base efficiently. We exploit the concept of histograms to organize the data and use an off-the-shelf radix sort algorithm to sort the keys within a single processor of GPU. We query the motion missing joints or markers, and as a result, we fetch a fixed number of nearest neighbors for the given input query motion. We employ an objective function with multiple error terms that substantially recover 3D joints or marker trajectories in parallel on the GPU. We perform comprehensive experiments to evaluate our approach quantitatively and qualitatively on publicly available motion capture datasets, namely CMU and HDM05. From the results, it is observed that the recovery of , , , , , and motion sequences works best, while the recovery of motion sequences of and results in slightly larger errors. However, on average, our approach executes outstanding results. Generally, our approach outperforms all the competing state-of-the-art methods in the most test cases with different action sequences and executes reliable results with minimal errors and without any user interaction.

摘要

在这项工作中,我们提出了一种新颖的数据驱动方法,用于恢复缺失或损坏的运动捕捉数据,无论是 3D 骨骼关节还是 3D 标记轨迹的形式。我们构建了一个知识库,其中包含先前存在的知识,这有助于我们能够推断运动捕捉数据中缺失或损坏的信息。然后,我们在 GPU 上并行构建 d-tree,以便快速搜索和从知识库中以最近邻的形式有效地检索此现有知识。我们利用直方图的概念来组织数据,并使用现成的基数排序算法在 GPU 的单个处理器内对键进行排序。我们查询运动中缺失的关节或标记,结果为给定输入查询运动获取固定数量的最近邻。我们使用具有多个误差项的目标函数在 GPU 上并行地对 3D 关节或标记轨迹进行大量恢复。我们在公开可用的运动捕捉数据集上(即 CMU 和 HDM05)进行了全面的实验,以定量和定性地评估我们的方法。从结果中可以看出, , , , ,和 运动序列的恢复效果最佳,而 和 运动序列的恢复结果误差略大。然而,平均而言,我们的方法执行出色的结果。一般来说,我们的方法在大多数具有不同动作序列的测试用例中都优于所有竞争的最先进方法,并以最小的误差和无需任何用户交互执行可靠的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7139/10098987/5c7c6fa25f50/sensors-23-03664-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验